MENGO SENIOR SCHOOL

BEGINNING OF TERM 2 EXAMS 2003

S.6 PHYSICS P510/1

TIME: 2 HOURS

INSTRUCTIONS: Attempt all questions. Assume where necessary -Acceleration due to gravity, $g = 9.81 m s^{-2}$ -Specific Heat capacity of water = 4200Jkg⁻¹k⁻¹ -Mass of the Earth = 5.97 x 10²⁴kg -Radius of the Earth, Re = 6.4 x 10⁶m -Avogadros number, NA = 6.02 x 10²³ mol⁻¹

QUESTIONS:

l(a)(i)	What assumptions are made in the derivation of the kinetic theory express the pressure of an ideal gas?	ion for (2)
(ii)	State any two ways in which real gases differ from ideal gases.	(2)
(b)	Distinguish between saturated and unsaturated vapors.	(3)
(c)	Draw sketch graphs to show, for a saturated vapour, the variation of:	
(i)	Pressure with temperature, volume remaining constant.	(1)
(ii)	Pressure with volume, temperature remaining constant.	(1)
(d)	Explain the form of the curves in (c)(i) and (ii) above, using the kinetic Th	eory of
	matter.	(2)
(e)	State the relation between pressure and volume for:	
(i)	Reversible isothermal process.	(1)
(ii)	Reversible adiabatic process.	(1)
(f)(i)	A diatomic gas initially at a pressure of 1.0×10^5 Pa expands reversibly to times its original volume of 2.0×10^{-3} m ³ at constant temperature of 273k.	five
	Calculate the work done by the gas during the expansion ($= 1.40$)	(4)
(ii)	State the conditions necessary to realise in practice:	
_	Areversible isothermal expansion.	(2)
_	A reversible adiabatic expansion.	$\dot{(1)}$
		(-)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

2(a)(i)	Define the coefficient of thermal conductivity of a material.	(1)
(ii)	Describe searle's method of determining the thermal conductivity of a goo conductor of heat.	od (7)
(b) (i)	The two ends of a metal bar of length 1.0m are perfectly lagged up to 20cm either end. The ends of the bar are maintained at 100° C and 0° C respective Sketch a temperature versus distance graph, along the bar.	n from ely. (2)
(ii)	Expalin the features of the graph in b(i).	(3)
(c)	The external walls of a house consist of 2 layers of brick separated by air of The outer face of the wall is at a temperature of 45° C, while the inside of the house is at 20° C. If the thickness of each brick layer is 15cm and that of the cavity is 5cm, calculate the temperatures of the walls in contact with the air cavity. The thermal conductivities of brick and air are 1.0 and 0.026 Wm ⁻	cavity. he le air ir in the ${}^{1}k^{-1}$ (7)
3(a)(i)	What is meant by a thermometric property?	(1)
(ii) (b)	What qualities make a particular property suitable for use in a practical thermometer? The value of the thermometric property X of a certain substance is given b $X_t=X_0 - 0.50t + (2.0 \times 10^{-4}) t^2$	(3) by:
	Where t is the temperature in degrees Celsius measured on a gas thermomy scale. What would be the Celcius temperature defined by the property X we correspond to a temperature of 50° C on this gas thermometer scale?	eter which (4)
(c)(i)	Describe an electrical method for determining the latent Heat of vapourisa a liquid.	tion of (4)
(ii)	An electrical heater rated 500W is immersed in a liquid of mass 2.0kg com in a large thermos flask of heat capacity 840 Jk ⁻¹ at 28^{0} C. Electrical power supplied to the heater for 10 minutes. If the specific Heat Capacity of the 2.5 x 10^{3} Jk ⁻¹ k ⁻¹ , its specific latent heat of vapourisation is 8.54×10^{3} Jkg ⁻¹ boiling point is 78^{0} C, estimate the amount of liquid which boils off.	tained is liquid is and its (8)

State any assumptions made in your calculation.

4(a)(i) Define the term Specific Heat Capacity.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

- (ii) What is meant by a cooling correction in calorimetry
- (b) A metal containing of heat capacity 20Jk⁻¹ holds 0.15kg of liquid. An immersion heater is placed in the liquid and a current of 3.0A with a p.d of 12V flows for 4.0 minutes. The temperature and time values are tabulated below:

Temp.0 ⁰ C	15.0	20.0	24.7	29.3	33.9	32.8	31.7	30.6
Time t(s)	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0

- (i) Plot a graph of temperature against time and use it to estimate the cooling correction.
- (ii) Calculate the Heat Capacity of the liquid.

END