MENGO SENIOR SCHOOL END OF TERM 1 2003 EXAMS S.6 PHYSICS P510/1 TIME: 2:30 HOURS

INSTRUCTIONS:

-Attempt FIVE questions in this paper -Assume where necessary -Acceleration due to gravity = $9.81ms^{-2}$ -Radius of the earth = $6.4 \times 10^6 m$ -Mass of the earth = $5.97 \times 10^{24} kg$ -Avogadra's number NA = $6.02 \times 10^{23} mol^{-1}$ -Density of water = $1000kgm^{-3}$ -Gas constant, $R = 8.31Jmol^{-1}k^{-1}$ -Universal gravitational constant, $G=6.67 \times 10^{-11} Nm^2kg^{-2}$ -Surface tension of water = $7.0 \times 10^{-2}Nm^{-1}$ -Specific Heat capacity of water = $4200J kg^{-1}k^{-1}$

SECTION A

1(a)(i) What is meant by Dimension of a physical quantity? (1)

(ii) For stream line flow of a non-viscous, incompressible fluid, the pressure P at a point is related to the height h and velocity v by the equation

$$(p-a) = pg(h-b) + \frac{1}{2}p(v^2 - d)$$

where a, b, d are constants, p is the density of the Fluid and g is acceleration due to gravity. Given that the equation is dimensionally consistent, find the dimensions of a, b and d. (3)

(b) Define Simple Harmonic Motion. (1)(c) Sketch the following graphs for a body performing SHM. Velocity against displacement. (1)(i) (ii) Displacement against time. (1)(d) The period of oscillation of a conical pendulum is 2.0s. If the string makes an angle of 60° to the vertical at the point of suspension. Calculate the: Vertical height of the point of suspension above the circle. (i) (3)(ii) Length of the string (2)

Ecolebooks.com

(iii)	Velocity of the mass attached to the string.	(3)	
(e) (f)	Give ONE example of oscillatory motion which approximates simp motion. Explain why the acceleration of a ball bearing falling through a liq	(1) uid decreases	
	continuously until it becomes zero. State the Newton's law of gravitation and deduce the dimensions of gravitational constant G.	(4)	
(ii)	A body has weight of 10N on earth. What will be the weight of the moon, if the ratio of the moon's radius to the earth's radius is 0.27 moon's mass to the earth's mass is 1.2×10	•	
(iii)	Sketch a graph to show the variation of the acceleration due to grav distances from the centre of the earth.	vity with (2)	
(b) (i)	A 10^3 kg satellite is launched is a packing orbit about the earth. Calculate the height of the satellite above the earth's surface.	(4)	
(ii)	Calculate the mechanical energy of the satellite.	(3)	
(iii)	Explain the effect of friction between such a satellite and the atm which it moves.	osphere in (3)	
3(a)(i)	What is meant by VISCOSITY?	(1)	
(ii)	Explain the effect of temperature on the viscosity of a gas.	(3)	
(iii)	Sketch the velocity-time graph for the motion of an oil drop in air. (1)		
(iv)	Find the terminal velocity of a oil drop of radius 2.5 x 10^{-6} m whethrough air. Neglect air density. Viscosity of air = 1.8×10^{-5} Nsm ⁻² Density of oil = 900 kg/m ³	iich falls (4)	
(v)	Explain why the velocity of a liquid at a wide part of a tube is less narrow part.	than that at a (2)	
(b)(i) (ii)	State Archimedes' principle. Describe how you would measure the density of an irregular so floats in water.	(1) lid which (5)	

- (iii) A hydrometer floats in water with 72% of its volume submerged. The hydrometer floats in another liquid with 80% of its volume submerged. Find the relative density of the liquid. (3)
 SECTION B
- 4(a)(i) Explain why the molar heat capacity of an ideal gas at constant pressure, Cp, differs from the molar heat capacity. Cv. (2)
- (ii) Derive the relation Cp-Cv = R, where R is the universal gas constant. (4)
- (b) A vessel containing 1.5 x 10⁻³ m³ of an ideal gas at a pressure of 8.7 x 10⁻²Pa and temperature 25⁰C is compressed isothermally to half its volume and then allowed to expand a diabatically to its original volume.
- (i) Calculate the final pressure and temperature of the gas. (Take CP/Cv = 1.41) (7)
- (ii) Sketch the work done during the isothermal process. (3)
- (c) Use the kinetic theory to account for the increase in pressure of a gas when its temperature is increased at constant volume. (3)

5(a)(i) State the assumptions made in the derivation of the expression $P = \frac{1}{3}pC^2$ for pressure of an ideal gas. (2)

- (ii) Use the expression in (a)(i) above to deduce Dolton's law of partial pressure.(3)
- (b)(i) What is meat by a saturated vapour? (1)
- (iii) Use the kinetic theory to account for the occurrence of saturated vapour pressures. (3)
- (d) A column of Nitrogen is trapped in a capillary tube of uniform cross sectional area and closed at one end by a thread of water as shown below:

Water thread

Nitrogen column

The length h is 20.8 cm at 25° C and 25.2cm at 83.3°C. Calculate the SVP of water at 83.3°C if its value at 25° C is 1.70 x 10³ Nm⁻² Neglect the weight of the water thread and assume that atmospheric pressure remains at 1.01 x 10⁵ Nm⁻².

- (d(i) Explain the variation of SVP of water with temperature at constant volume, with suitable illustrations. (3)
- (ii) Using the same axes, sketch pressure Vs volume graphs for a real gas:
- (i) Above the critical temperature.
- (ii) At the critical temperature
- (iii) Below the critical temperature indicate in your sketch the different phases of the gas. (5)
- 6(a) Define specific Heat Capacity. (1)
- (b) Describe an electrical method for measuring specific heat capacity of a metal. (6)
- (c) In a continuous flow calorimeter for measurement of specific heat capacity of a liquid, $3,6 \ge 10^{-3} \text{m}^3$ of liquid flows through the apparatus in 10 minutes. When electrical energy is supplied to the heating coil at a rate of 44W, a steady difference of 4k is obtained between the temperatures of the out flowing and inflowing liquid. When the rate of flow is increased to $4.8 \ge 10^{-3} \text{m}^3$ of liquid in 10 minutes, the electrical power required to maintain the temperature difference is 58W. Find the:

(i)	Specific Heat Capital of the liquid.	(6)
(ii)	Rate of loss of heat to the surroundings.	(2)
	(Density of liquid = $800m^{-3}$)	

(d)(i)State any two advantages of continuous flow method over the method of mixtures for the determination of SHC's of liquids. (2)

(ii) Explain why evaporation causes cooling. (3)

END

Ecolebooks.com

ColeBooks