PETTA COMMUNITY SECONDARY SCHOOL

MIDTERM II EXAMS 2015 S.5 PHYSICS PAPER 1

DATE: July 7th TIME: 2 HOURS

INSTRUCTIONS; 1. Attempt all the questions 2. Assume where necessary

- Gravitational acceleration $g = 9.81 M s^{-1}$ -Specific heat capacity of water =4200JK $g^{-1}K^{-1}$ -Specific heat capacity of copper=400JK $g^{-1}K^{-1}$

SECTION A

1(a)(i)) What is meant by scalar and vector quantities?				
(ii)	i) Give three examples of each of the quantities in (a)(i) above.				
(b)(i)	What is meant by uniformly accelerated motion?	(1)			
(ii)	Sketch speed-time and distance-time graphs for a body moving with uniform acceleration.	(2)			
(c)	A ball is kicked from a spot 30m from the goal posts with a velocity of 20m/s at 3 to the horizontal. The ball just, clears the horizontal bar of the goal posts. Find	30 ⁰			
(i)	The height of the goal posts	(5)			
(ii)	The time of flight	(4)			
(iii) How far behind the goal posts the ball lands.	(3)			
2 (a)	Find the resultant force for the following system of forces.	(4)			
(0)	State the conditions for a system of three coplanar forces to be in equilibrium.	(2)			
(ii) (3)	State Newton's laws of motion.				
(d)	The diagram below shows a block X of mass $2kg$ placed on a rough plane inclined at an angle of 30^0 to the horizontal. A string which is parallel to the plane and passes over a light smooth pulley connects X to another block Y of mass $3kg$.				

If the coefficient of friction between block X and the inclined plane is 0.3, Find:

- (i)The acceleration of the system.(3)(ii)The tension in the string.(2)
- (ii)The tension in the string.(2)e(i)State the principle of conservation of linear momentum.(1)
- (ii) Show how Newton's laws of motion can be applied to arrive at the principle stated in (3)
- (iii) State two conditions for a collision to be perfectly elastic. (2)

SECTION B:

2. α? 3.79 marks 3	a)	i)what ii)	t is a thermometric property? What qualities make a particular thermometric property	<i>1 mark.</i> y suitable for use			
			in a practical thermometer?	2 marks			
		iii) List four thermometric properties which are used in thermometry 2 marks					
	b)	i)With reference to an electrical resistance thermometer, outline the Essential steps involved in the setting up of a Celsius temperature scale <i>3 marks</i>					
		i)	What advantages and disadvantages are there in resistance thermometer? <i>3 marks</i>	using a platinum			
	c) $\alpha \theta$, thermo	i) where ometer.	The temperature θ on a resistance thermometer is give α is the temperature coefficient of resistance of the met	on by: $R_{\theta} = R_0(1 + t_0)$			
	,	The resistance of the thermometer is 3.49 at 40°C and 3.56 at 50°C. What is					
	W1 .?	hat is th	the temperature of a liquid in which the thermometer h	has a resistance of $\frac{4}{4}$			
	a)	i)	Define specific Heat capacity and give the units in whi	ch it is measured 2 marks			
		i)	Explain how you would determine the specific Heat Ca of copper. State any assumptions and precautions take	apacity of a piece n. 6 marks			
	b)	A meta 20°C, 0.43KJ What i	al of mass 500g is heated to 120°C and dropped into 100 contained in a copper can of mass 200g and speci fkg ⁻¹ k ⁻¹ . The final temperature reached by the mixture w s the specific Heat Capacity of the metal?	bg of water of first Heat capacity vas 45°C.			
		c) capacit	i) The temperature of 0.45kg of water in a caty	4 <i>marks</i> lorimeter of Heat			
			80JK ⁻¹ is increased from 288K to 352K in 480S by a Neglecting heat losses, calculate the power of the heate	n electrical heater. er. <i>3 marks</i>			

© Physics Department Petta Community S.S

Ecolebooks.com

Ecolatooks

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM