MENGO SENIOR SCHOOL S6 PHYSICS III EXAM END OF 1ST TERM 2002 TIME: 1¹/₂ HOURS.

In this experiment you will determine the refractive index n, and the width W, of the glass block provided

Ecolebooks.com

- a) Place a glass block on a white sheet of paper.
- b) Trace the outline of the block.
- c) Remove the glass block and label it's outline as PQRS.
- d) Draw a normal NM at B 3cm from P
- e) Draw a line AB such that angle $i = 10^{\circ}$ as shown in the diagram.
- f) Replace the glass block on it's outline
- g) Fix pins vertically P, and P₂ along AB.
- h) Looking through side SR, fix pins P_3 and P_4 such that they appear to be with the images of pins P_1 and P_2 .
- i) Remove the glass block and the pins.
- j) Draw a line through P₃ and P₄ to meet SR at C.
- k) Join B to C.
- 1) Measure and record angle r and distance L
- m) Repeat procedures (e) to (L) for values: $i = 20^{\circ}$, 30° , 40° , 50° and 60°
- n) Tabulate your results in order table including values of : Sin i, Sin r, Sin² i and L^{-2} .
- o) Plot a graph of L^{-2} against $Sin^2 i$.
- p) Find the slope, S, of the graph.
- q) Find the intercept C on the L^{-2} axis
- r) Calculate the width W of the glass block from the expression.

W =
$$\sqrt{\frac{1}{C}}$$