P510/3 physics practical (*manipulation of data*)

(write the solutions in the last three pages of your work books)

1. The results below were obtained in in an experiment to determine Young's modulus, *E*, of the material of the metre rule. t = 5.98mm, b = 2.52cm

For $l_1 = 0.950$ m $P_0 = 0.434$ m, P = 0.130m

- a) Find the depression $y_1 = P_0 P$. For $l_2 = 0.900$ m $P_0 = 0.374$ m, P = 0.110m.
- b) Find the depression $y_1 = P_0 P$.

$$_{3} \quad E_{1} = \frac{2Mg}{bt^{3}} \left(\frac{t_{1}}{y_{1}} + \frac{t_{2}}{y_{2}} \right)$$

3

c) Calculate Young's modulus, E_1 , from the expression where

M= 0.200kg and $g = 9.81 m s^{-2}$.

d)

<i>l</i> (m)	$P_0(cm)$	P(cm)	
0.900	19.6	28.5	
0.800	19.3	25.1	
0.700	18.9	22.9	
0.600	18.7	21.0	
0.500	18.6	20.1	
0.400	18.5	19.3	

Draw table including values of $x = (P - P_0)$ in metres, $log_{10}x$ and $log_{10}l$.

- e) Plot a graph of $log_{10}x$ against $log_{10}l$.
- f) Read and record the intercept, C on the $log_{10}l$ a-xis
- g) Calculate Young's modulus, E_2 , from the expression, $C = log_{10}(\frac{mg}{4E_2bt^3})$ where m= 0.500kg and $g = 9.81ms^{-2}$.
- h) Calculate Young's modulus , *E* from the expression $E = \frac{1}{2}(E_1 + E_2)$
- 2. The results below were obtained in an experiment to determine the resistance per metre of the material of the wire.

$$l_1$$
= 30.0cm l_2 = 70.0cm I_1
0.72A I_2 = 0.42A
 V_1 = 1.65V V_2 = 1.95V

a) Calculate the resistance per metre, r_1 , of the material of the wire from the expression, $r_1 = \frac{1}{2} \left(\frac{V_1}{I_1 I_1} + \frac{V_2}{I_2 I_2} \right)$

b)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

50						
2	1.	1	24	1.1		÷.
65	EC.	-		~	97	-

<i>x</i> (m)	<i>l</i> (cm)
0.200	25.5
0.300	30.5
0.400	37.4
0.500	42.4
0.600	46.9
0.700	51.9

1

values $\frac{1}{x}$ of 1 and . $\frac{1}{x}$ lc) Draw table including

d) Plot a graph of 1 against.

- e) Find the slope, S of the graph.
- f) Calculate the resistance per metre, r_2 , from the expression, $r_2 = \frac{R_s}{s}$ where $R_s = 5.0\Omega$. g) Calculate the resistance per metre, r, from the expression, $r = \frac{r_1 + r_2}{2}$.

END

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

Ecoletooks

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM