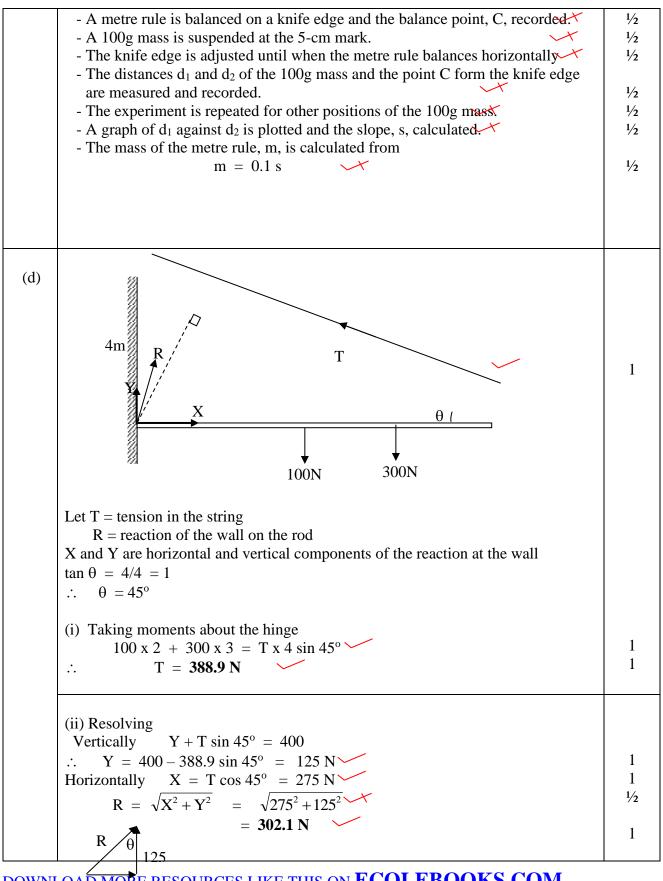
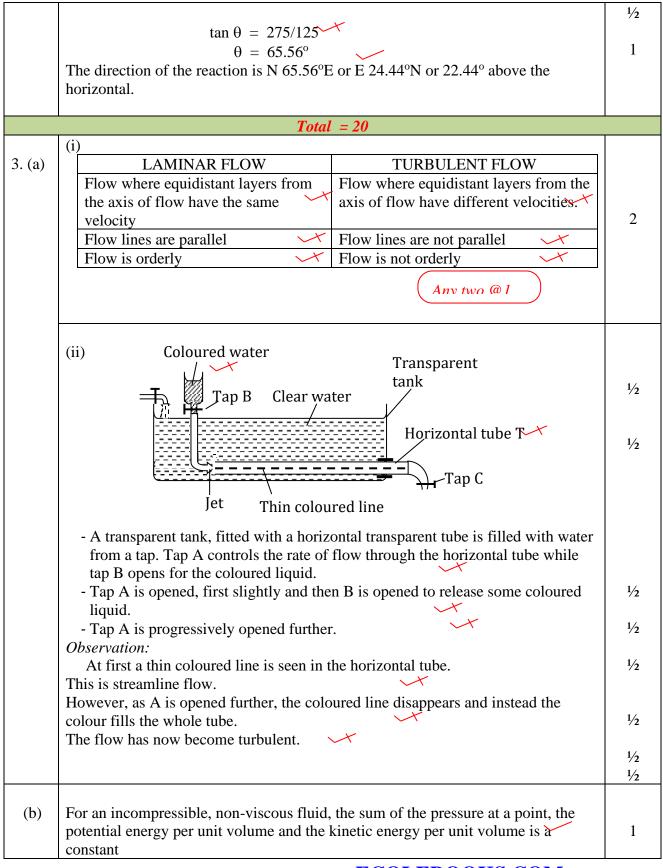
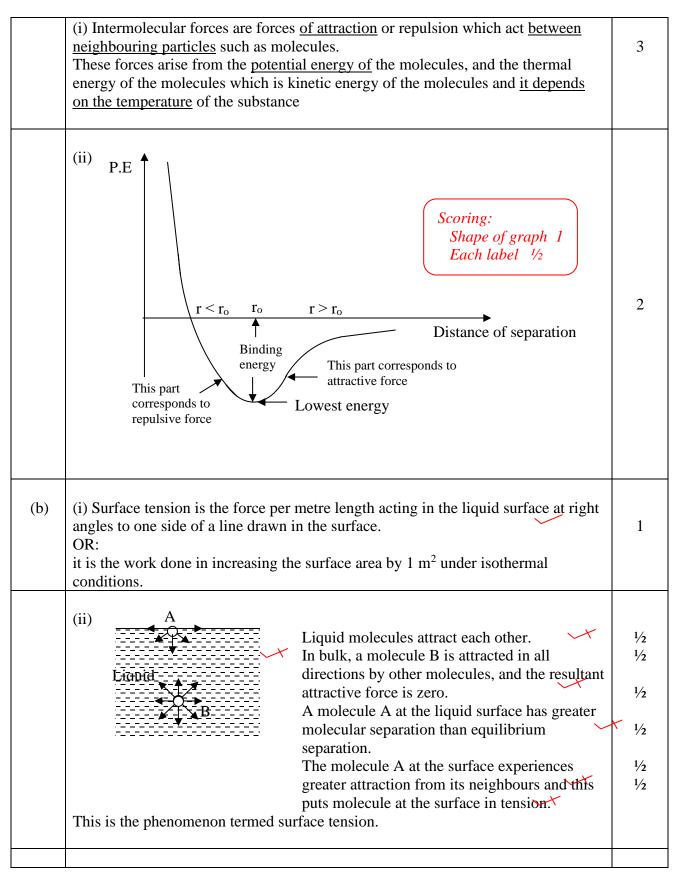
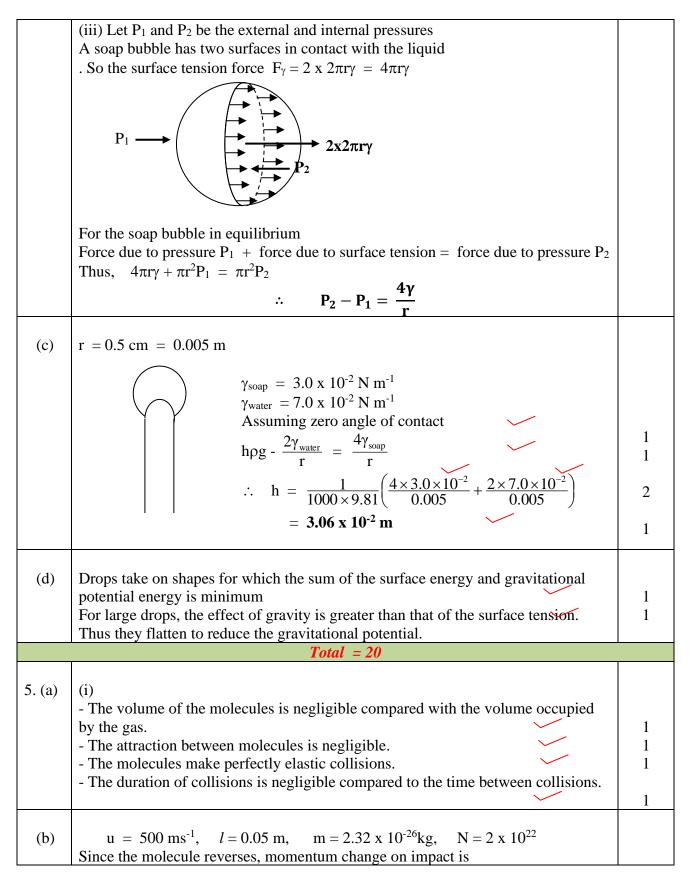


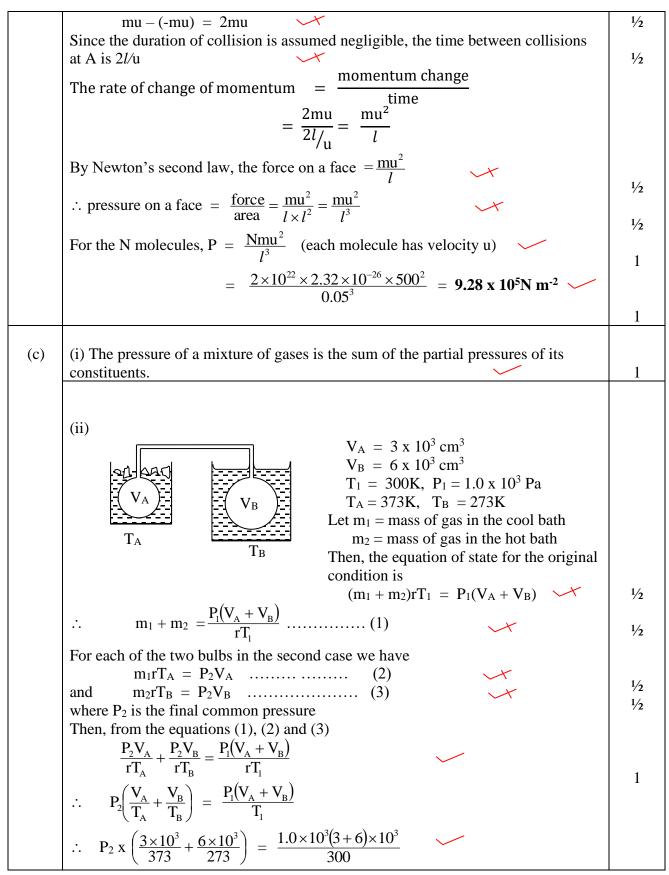
Qn			Answ	ver			Mark s
1. (a)	(i) the acceleration of a body in the earth's gravitational field						1
	(ii) The bob is suspended from a retort stand such that it is at a height h from the \checkmark floor.						- 1/ ₂
				θ h	~		1
	- The length of the pendulum is adjusted to about 1.100 m						1⁄2
	- The bob is dis		gh a small an	gle to the ver	tical and then	released as	1/2
	shown in the	-	ta aga:11a4; ana	and the news	d T and fair	-H-	$\frac{1/2}{1/2}$
	 The time, t, for 20 complete oscillations and the period, T, are found. The procedure is repeated for other five values of h. The results are tabulated including values of T². 					72	
	h	m)	t(s)	T(s)	$T^{2}(s^{2})$		
		-	-	-			1
	- A graph of h a - g is calculated	-		e slope, s, of	the graph four	ndt vt	1 1⁄2
(b)	<i>l</i> (cm)	<i>l</i> (m)	t(s)	T(s)	$T^{2}(s^{2})$		
(-)	20	0.200	17.8	0.890	0.792		
	30	0.300	22.0	1.100	1.210		
	40	0.400	25.0	1.250	1.563		
	50	0.500	28.0	1.400	1.960		
	Slope, s = $\frac{\Delta T^2}{\Delta l}$ s = $\frac{4\pi^2}{g}$		$\frac{0.7625}{-0.190} = 3$	3.84 s ² m ⁻¹			



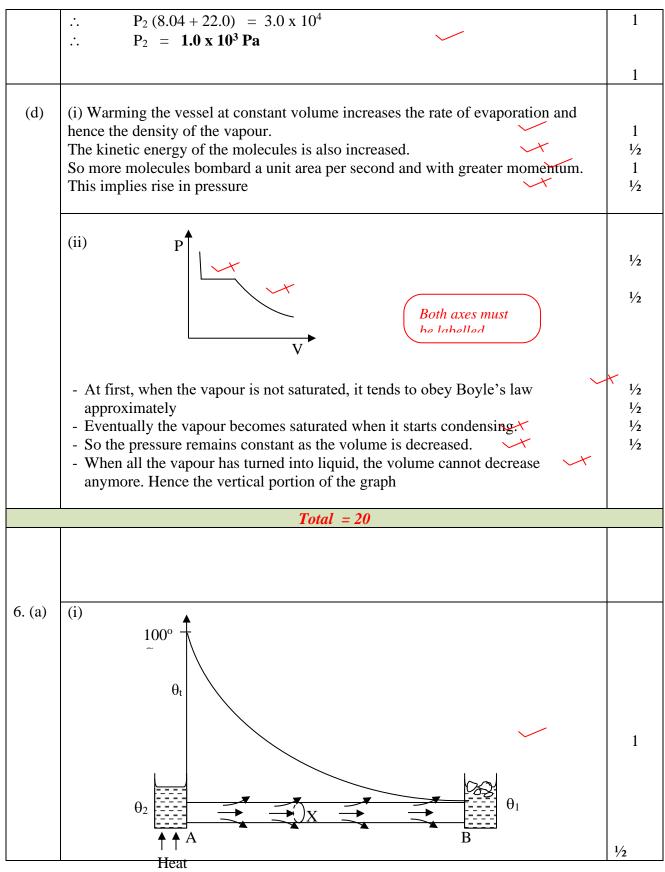


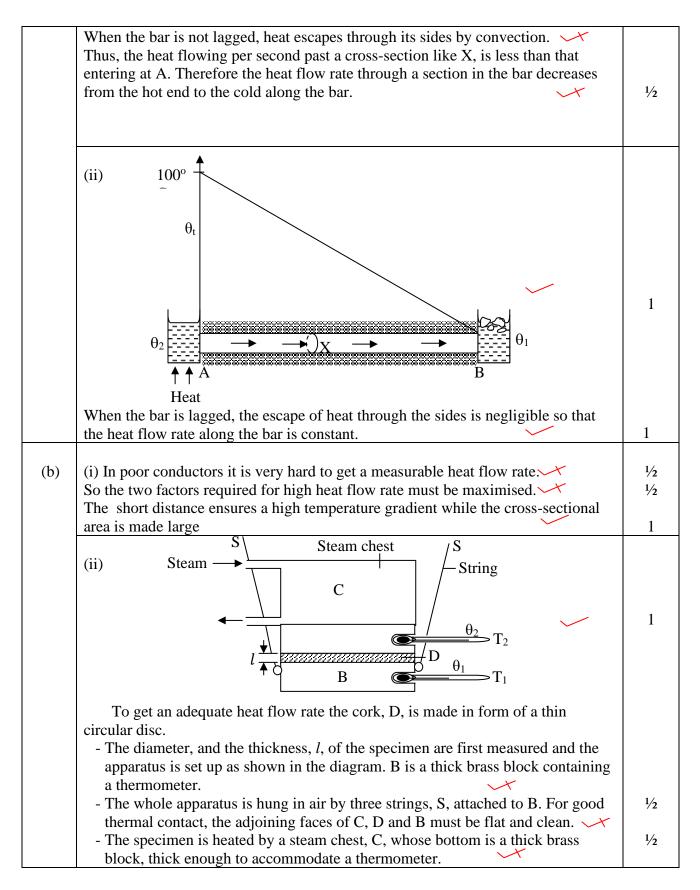


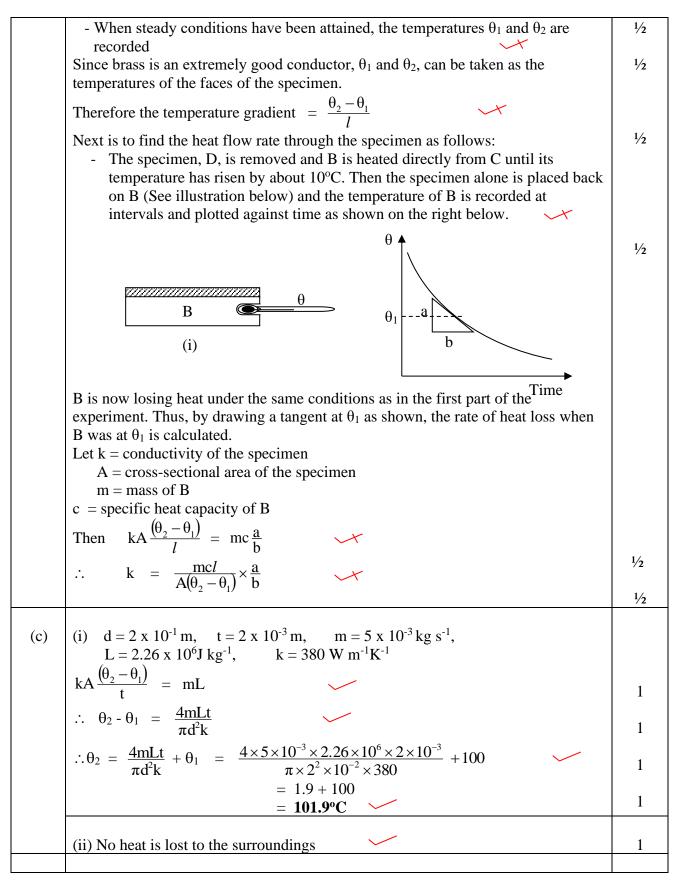

(c) $r_{1} = 1.0 \text{ cm} = 0.01 \text{ m}$ $r_{2} = 0.5 \text{ cm} = 0.005 \text{ m}$ $P_{1} = 4.0 \text{ x } 10^{5} \text{ N m}^{-2}$ $P_{2} = ?$ $v_{1} = 4.0 \text{ m s}^{-1}$ $v_{2} = ?$ $h_{1} = 0$ (reference level) $h_{2} = 5.0 \text{ m}$ (i) By the equation of continuity $A_{1}v_{1} = A_{2}v_{2}$ $\pi r_{1}^{2}v_{1} = \pi r_{2}^{2}v_{2}$ $\therefore v_{2} = v_{1} \left(\frac{r_{1}}{r_{2}}\right)^{2} = 4.0 \text{ x} \left(\frac{0.01}{0.005}\right)^{2}$ $= 16 \text{ m s}^{-1}$ (ii) By Bernoulli's principle $P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho g_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho g_{2}$ $\therefore P_{2} = 4.0 \text{ x } 10^{5} + \frac{1}{2} \text{ x } 1000 \text{ x } 4^{2} - \frac{1}{2} \text{ x } 1000 \text{ x } 16^{2} - 5.0 \text{ x } 1000 \text{ x } 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{t}\right)^{2} [a_{1}^{3} (n_{1}^{3})^{2}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{t}\right] [a_{1}^{3} (n_{1}^{3})^{2}$	1/2 1/2 1 1 1 1 1 1 1
(d) $v_{1} = 4.0 \text{ m s}^{-1} \qquad v_{2} = ?$ $h_{1} = 0 \text{ (reference level)} \qquad h_{2} = 5.0 \text{ m}$ (i) By the equation of continuity $A_{1}v_{1} = A_{2}v_{2}$ $\pi r_{1}^{2}v_{1} = \pi r_{2}^{2}v_{2}$ $\therefore v_{2} = v_{1} \left(\frac{r}{r_{2}}\right)^{2} = 4.0 \text{ x} \left(\frac{0.01}{0.005}\right)^{2}$ $= 16 \text{ m s}^{-1}$ (ii) By Bernoulli's principle $P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho gh_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho gh_{2}$ $\therefore P_{2} = 4.0 \text{ x} 10^{5} + \frac{1}{2} \text{ x} 1000 \text{ x} 4^{2} - \frac{1}{2} \text{ x} 1000 \text{ x} 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{k} a^{y} \cdot \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} \left[a^{y}_{1}\right] \left[\eta\right]^{k}$	1/2 1 1 1 1 1
(d) $h_{1} = 0 \text{ (reference level)} h_{2} = 5.0 \text{ m}$ $(i) By the equation of continuity A_{1}v_{1} = A_{2}v_{2} \pi r_{1}^{2}v_{1} = \pi r_{2}^{2}v_{2} \therefore v_{2} = v_{1} \left(\frac{r_{1}}{r_{2}}\right)^{2} = 4.0 \text{ x} \left(\frac{0.01}{0.005}\right)^{2} = 16 \text{ m s}^{-1} (ii) By Bernoulli's principle P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho gh_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho gh_{2} \therefore P_{2} = 4.0 \text{ x} 10^{5} + \frac{1}{2} \text{ x} 1000 \text{ x} 4^{2} - \frac{1}{2} \text{ x} 1000 \text{ x} 9.81 = 230,950 \text{ N m}^{-2} (i) Pressure gradient Radius of the pipeNature of the fluid/ or coefficient of viscosity (ii) \text{ Let } \frac{V}{t} = k \left(\frac{P}{l}\right)^{k} a^{y} \cdot \eta^{z} By dimension analysis\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} \left[a^{b}_{1}[\eta]^{k}$	1/2 1 1 1 1 1
(i) By the equation of continuity $A_{1}v_{1} = A_{2}v_{2}$ $\pi r_{1}^{2}v_{1} = \pi r_{2}^{2}v_{2}$ $\therefore v_{2} = v_{1} \left(\frac{r_{1}}{r_{2}}\right)^{2} = 4.0 \text{ x} \left(\frac{0.01}{0.005}\right)^{2}$ $= 16 \text{ m s}^{-1}$ (ii) By Bernoulli's principle $P_{1} + \frac{1}{2}\rho v_{1}^{2} + \rho gh_{1} = P_{2} + \frac{1}{2}\rho v_{2}^{2} + \rho gh_{2}$ $\therefore P_{2} = 4.0 \text{ x } 10^{5} + \frac{1}{2} \text{ x } 1000 \text{ x } 4^{2} - \frac{1}{2} \text{ x } 1000 \text{ x } 16^{2} - 5.0 \text{ x } 1000 \text{ x } 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{5} a^{y} \cdot \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{T} [a]^{t} [\eta]^{t}$	1/2 1 1 1 1 1
$\pi r_1^2 v_1 = \pi r_2^2 v_2$ $\therefore v_2 = v_1 \left(\frac{r_1}{r_2}\right)^2 = 4.0 \text{ x } \left(\frac{0.01}{0.005}\right)^2$ $= 16 \text{ m s}^{-1}$ (ii) By Bernoulli's principle P_1 + $\frac{1}{2} \rho v_1^2 + \rho gh_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho gh_2$ $\therefore P_2 = 4.0 \text{ x } 10^5 + \frac{1}{2} \text{ x } 1000 \text{ x } 4^2 - \frac{1}{2} \text{ x } 1000 \text{ x } 16^2 - 5.0 \text{ x } 1000 \text{ x } 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{p}{l}\right)^k a^y \eta^z$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{p}{l}\right]^t [a]^k [\eta]^k$	1/2 1 1 1 1 1
$\begin{array}{rcl} \therefore & v_{2} = v_{1} \left(\frac{r_{i}}{r_{2}} \right)^{2} = 4.0 \ x \left(\frac{0.01}{0.005} \right)^{p} \\ & = 16 \ m \ s^{-1} \\ \end{array}$ (ii) By Bernoulli's principle $\begin{array}{r} P_{1} + \frac{1}{2} \ \rho v_{1}^{2} + \rho gh_{1} = P_{2} + \frac{1}{2} \ \rho v_{2}^{2} + \rho gh_{2} \\ \therefore & P_{2} = 4.0 \ x \ 10^{5} + \frac{1}{2} \ x \ 1000 \ x \ 4^{2} - \frac{1}{2} \ x \ 1000 \ x \ 16^{2} - 5.0 \ x \ 1000 \ x \ 9.81 \\ & = 230,950 \ N \ m^{-2} \end{array}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l} \right)^{p} .a^{y} .\eta^{z}$ By dimension analysis $\left[\frac{V}{t} \right] = \left[\frac{P}{l} \right]^{t} [a^{b}_{1} [\eta]^{p} \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$= 16 \text{ m s}^{-1}$ (ii) By Bernoulli's principle P ₁ + $\frac{1}{2} \rho v_1^2 + \rho gh_1 = P_2 + \frac{1}{2} \rho v_2^2 + \rho gh_2$ $\therefore P_2 = 4.0 \text{ x } 10^5 + \frac{1}{2} \text{ x } 1000 \text{ x } 4^2 - \frac{1}{2} \text{ x } 1000 \text{ x } 16^2 - 5.0 \text{ x } 1000 \text{ x } 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^k .a^y .\eta^z$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^k [a]^p [\eta]^p$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(ii) By Bernoulli's principle $P_{1} + \frac{1}{2} \rho v_{1}^{2} + \rho gh_{1} = P_{2} + \frac{1}{2} \rho v_{2}^{2} + \rho gh_{2}$ $\therefore P_{2} = 4.0 \times 10^{5} + \frac{1}{2} \times 1000 \times 4^{2} - \frac{1}{2} \times 1000 \times 16^{2} - 5.0 \times 1000 \times 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{p}{l}\right)^{k} .a^{y} .\eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{p}{l}\right]^{k} [a]^{v} [\eta]^{k}$	1 1 1 1
(d) $\begin{aligned} P_1 + \frac{1}{2}\rho v_1^2 + \rho gh_1 &= P_2 + \frac{1}{2}\rho v_2^2 + \rho gh_2 \\ \therefore P_2 &= 4.0 \times 10^5 + \frac{1}{2} \times 1000 \times 4^2 - \frac{1}{2} \times 1000 \times 16^2 - 5.0 \times 1000 \times 9.81 \\ &= 230,950 \text{ N m}^{-2} \end{aligned}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l} \right)^k .a^y .\eta^z$ By dimension analysis $\left[\frac{V}{t} \right] = \left[\frac{P}{l} \right]^k [a]^y [\eta]^z$	1
(d) $P_{1} + \frac{1}{2} \rho v_{1}^{2} + \rho g h_{1} = P_{2} + \frac{1}{2} \rho v_{2}^{2} + \rho g h_{2}$ $\therefore P_{2} = 4.0 \times 10^{5} + \frac{1}{2} \times 1000 \times 4^{2} - \frac{1}{2} \times 1000 \times 16^{2} - 5.0 \times 1000 \times 9.81$ $= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{k} a^{y} \cdot \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} [a]^{b} [\eta]^{k}$	1
$\therefore P_{2} = 4.0 \times 10^{5} + \frac{1}{2} \times 1000 \times 4^{2} - \frac{1}{2} \times 1000 \times 16^{2} - 5.0 \times 1000 \times 9.81$ = 230,950 N m ⁻² (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{k} .a^{y} .\eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} [a]^{y} [\eta]^{k}$	1
$= 230,950 \text{ N m}^{-2}$ (d) (i) Pressure gradient Radius of the pipe Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{k} .a^{y} .\eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} [a]^{y} [\eta]^{z}$	
Radius of the pipe Nature of the fluid/ or coefficient of viscosity $(ii) \text{ Let } \frac{V}{t} = k \left(\frac{P}{l}\right)^{k} . a^{y} . \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} . \left[a\right]^{y} [\eta]^{z}$	1
Radius of the pipe Nature of the fluid/ or coefficient of viscosity $(ii) \text{ Let } \frac{V}{t} = k \left(\frac{P}{l}\right)^{k} . a^{y} . \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} . \left[a\right]^{y} [\eta]^{z}$	1
Nature of the fluid/ or coefficient of viscosity (ii) Let $\frac{V}{t} = k \left(\frac{P}{l}\right)^{k} . a^{y} . \eta^{z}$ By dimension analysis $\left[\frac{V}{t}\right] = \left[\frac{P}{l}\right]^{k} . [a]^{y} [\eta]^{z}$	
By dimension analysis $\begin{bmatrix} V \\ t \end{bmatrix} = \begin{bmatrix} P \\ l \end{bmatrix}^{t} \begin{bmatrix} a \end{bmatrix}^{y} [\eta]^{z}$	
By dimension analysis $\begin{bmatrix} V \\ t \end{bmatrix} = \begin{bmatrix} P \\ l \end{bmatrix}^{t} \begin{bmatrix} a \end{bmatrix}^{y} [\eta]^{z}$	
$\left[\frac{\mathbf{V}}{\mathbf{t}}\right] = \left[\frac{\mathbf{P}}{l}\right]^{\mathbf{k}} [\mathbf{a}]^{\mathbf{y}} [\mathbf{\eta}]^{\mathbf{z}}$	
\therefore L ³ T ⁻¹ = (ML ⁻² T ⁻²) ^x . L ^y .(ML ⁻¹ T ⁻¹) ^x	2
Equating powers: for M: $x + z = 0$ (i)	_
L: $-2x + y - z = 3$ (ii)	
T: $-2x - z = -1$ (iii) from which $x = 1$, $z = -1$, $y = 4$	
	1
$\therefore \qquad \frac{V}{t} = \frac{kPa^4}{\eta l}$	
	1
(e) Origin of viscosity in liquids:	
Liquid molecules are fairly apart and have intermolecular forces of attraction.	1
For one layer to move over the other, energy is required.	$\frac{1/2}{1^{1/2}}$
The force required to drag the layers over the others constitutes the viscosity in a liquid.	172
<i>Total</i> = 20	
. (a)	

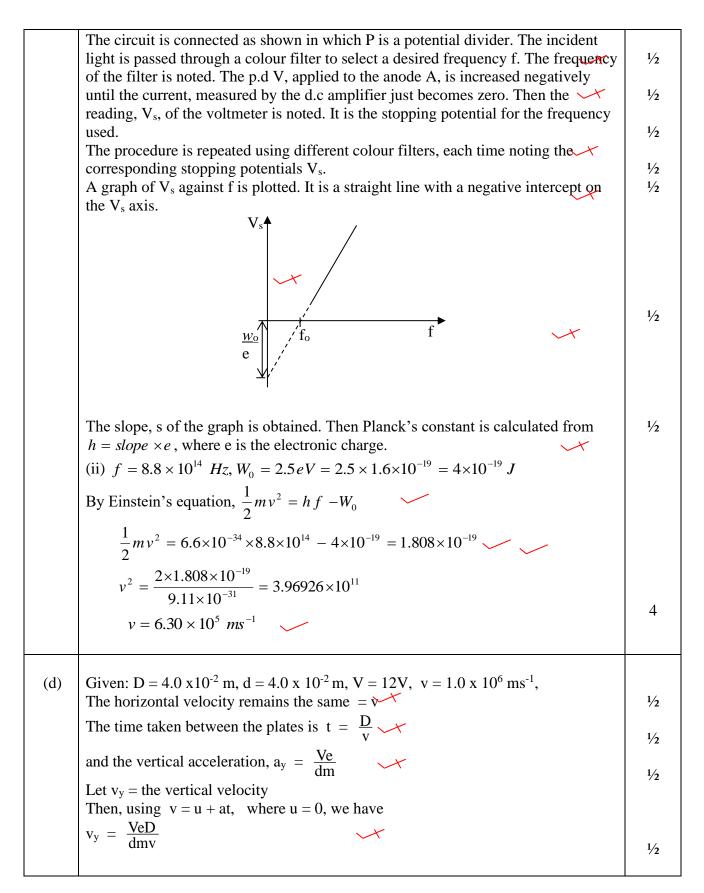


DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**





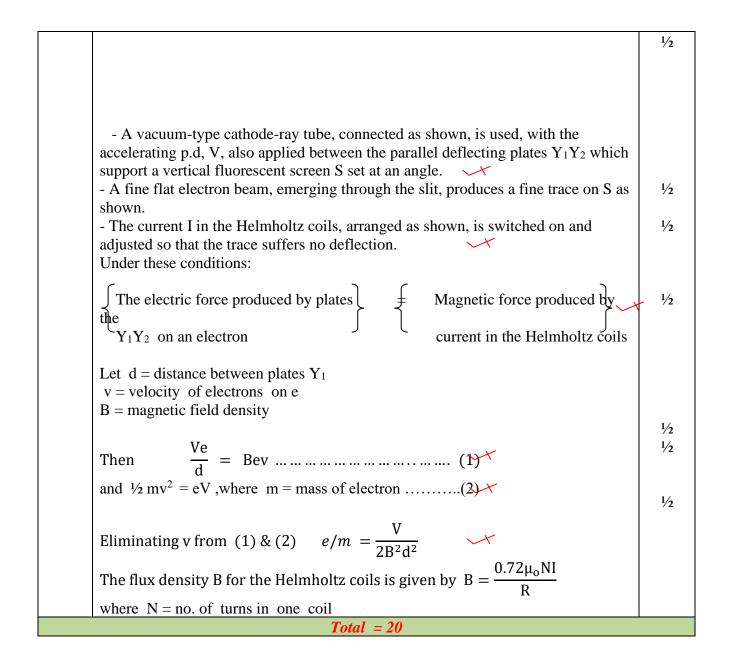




(d)	(i) The total power radiated per m^2 from a black body is proportional to the forth power of the body's absolute temperature	1
	(ii) This is because as the temperature rises, the intensity of all the wavelengths increases but that of the shorter wavelengths increases more rapidly.So the peak intensity shifts from the red end of the spectrum into the visible	1 1 1
	spectrum. Since the visible spectrum is a narrow band, the peak encompasses the entire spectrum of white light.	1
	Total = 20	
7. (a)	(i)the quantity of heat required to convert 1 kg mass of a substance from liquid to vapour at constant temperature.	1
	(ii) The apparatus is set up as shown in the	1⁄2
	Lagging Lagging the Lagging La	1
	Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour jacket Vapour Vapour jacket Vapour Va	1
	Heater V_{apour}	1⁄2
	Condenser $ -$	1⁄2
	Then $I_1V_1 = m_1L + h$ (1) The experiment is repeated at new values I_2 and V_2 of current and p.d respectively.	1
	$Let m_2 = new mass of liquid collected per second.$	1⁄2
	Then $I_2V_2 = m_2L + h$ (2) From (1) and (2) $I_1V_1 - I_2V_2$	1
	$L = \frac{I_1 V_1 - I_2 V_2}{m_1 - m_2}$	
(c)	(i) the quantity of heat required to raise the temperature of 1 kg of a substance	
	by 1 K.	1

	 (ii) Let m = mass of liquid evaporated M = original mass of liquid D = electrical power 	
	P = electrical power $C = heat capacity of flask$ Then $Pt = (Mc + C)(78 - 28) + mL$	2
	$\therefore mL = Pt - (Mc + C)(78 - 28) = (500 x 10 x 60) - (2 x 2500 + 840) x 50 = 3.0 x 105 - 2.92 x 105 = 8 x 103$	1 1
	$\therefore m = \frac{8 \times 10^3}{8.54 \times 10^3} = 0.937 \text{ kg}$ It is assumed that all the electrical energy is used to heat and evaporate the liquid.	1 1
(d)	(i) the temperature at which the saturated vapour pressure of a liquid is equal to the external pressure acting on the liquid.	1
	(ii) When the external pressure is increased, the liquid molecules will need a higher kinetic energy in order to develop the vapour pressure that will equal to the external. So the liquid boils at a higher temperature	
	<i>Total</i> = 20	
8.(a)	(i) to establish the electronic charge.	1
(b)	(ii) Photoelectric emission is the emission of electrons from a metal surface when electromagnetic radiation of high enough frequency falls on it while thermionic emission is emission of electrons from a metal surface as a result of heating the metal.	2
	(i) Work function – minimum energy required for an electron to be ejected	1
	 from a metal surface. (ii) Stopping potential – is the value of the negative potential difference which just stops the electrons with maximum kinetic energy from reaching the anode from the cathode. 	1
(c)	(i) Laboratory Experiment to verify Einstein's photoelectric Incident light	1⁄2
	Colour filter	1/2
	V d.c amplifier	1⁄2
	P	1⁄2

Now,
$$\tan 0 = \frac{v_r}{v} = \frac{VeD}{dmv^2}$$
1 $= \frac{12 \times 1.6 \times 10^{-9} \times 4.0 \times 10^{-2}}{4.0 \times 10^{-3} \cdot 1.0 \times 10^{12}} = 2.11$ 1 $:0 = 64.6^{\circ}$ 1Total = 209. (a)Bohr's postulates of the hydrogen atom
(1) Electrons in the atom can revolve round the nucleus only in certain allowed
orbits and while in these orbits they do not emit radiation.
(ii) an electron can jump from one orbit to another of lower energy emitting
radiation of energy equal to the energy difference of the two orbits (or of higher
energy by absorbing a definite amount of energy equal to the energy difference of
the orbits)1(b)He proposed a model of a hydrogen atom in which one electron of charge - e and
mass m was moving with speed v in an orbit of of radius r round a central
nucleus of charge + e and in an orbit where the clectron's angular momentum is a
multiple of $h/2\pi$ the energy is constant, h being the Planck constant
i.e.where $mvr = nh/2\pi$ (1)1/2The force of attraction between the electron and the nucleus is
 $F = \frac{e^2}{4\pi\varepsilon_0 r^2}$ and this is the centripetal force $\frac{mv^2}{r}$ 1/2Thus $\frac{1}{2}mv^2 = \frac{e^2}{8\pi\varepsilon_0 r} - \frac{e^2}{4\pi\varepsilon_0 r} = \frac{-e^2}{8\pi\varepsilon_0 r}$ 1/2Now, r can be eliminated using (1) and (3) as follows
from (1) $v = \frac{nh}{\pi me^2}$ 1/2VeryNumeImmeImmeImmeImmeImmeImmeImmeImmeImmeImme


	Total energy, $E = \frac{-e^2}{8\pi\epsilon_0 r} \times \frac{\pi m e^2}{\epsilon_0 n^2 h^2} = \frac{-me^4}{8\epsilon_0^2 n^2 h^2}$	1⁄2	
	$E_{3} = -\frac{9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^{4}}{8 \times (8.85 \times 10^{-12})^{2} \times 3^{2} \times (6.6 \times 10^{-34})^{2}} = -2.416 \times 10^{-19} J$	1	
	$E_2 = -\frac{9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^4}{8 \times (8.85 \times 10^{-12})^2 \times 2^2 \times (6.6 \times 10^{-34})^2} = -5.44 \times 10^{-19} J$	1	
	Energy radiated $E = E_3 - E_2 = -2.416 \times 10^{-19} - 5.44 \times 10^{-19} = 3.024 \times 10^{-19}$	1	
	$\frac{hc}{\lambda} = 3.024 \times 10^{-19} : \lambda = \frac{6.6 \times 10^{-34} \times 3.0 \times 10^8}{3.024 \times 10^{-19}} = 6.548 \times 10^{-7} m$	1⁄2	
		1	
(c)	$E_1 = -10.4 \text{ eV}, E_2 = -5.5 \text{ eV}, E_3 = -3.7 \text{ eV}, E_4 = -1.6 \text{ eV}$		
	(i) Ionisation energy = $E_{\infty} - E_1$ = 0 - ⁻ 10.4 eV = 10.4 x 1.6 x 10 ⁻¹⁹ = 1.664 x 10 ⁻¹⁸ J		
	(ii) $E_f - E_i = 4.0 \text{ eV}$	1/2	
	$\therefore \qquad E_{f} = 4.0 \text{eV} + ^{-}10.4 \text{eV}$ $= ^{-}6.4 \text{ eV}, \text{ the atom remains unexcited.}$		
	$E_f = 11.0eV + -10.4eV$ = 0.6 eV, since E_f is positive, the atom is ionised.	$\frac{1/2}{1}$	
(d)	q_1 q_2 For closest distance of approach	I	
	z-nuclei charge system	1/2	
	$\frac{x}{\sqrt{2mv^2}} = \frac{q_1 q_2}{4\pi \varepsilon x}$ $\therefore x = \frac{q_1 q_2}{2\pi \varepsilon x m v^2}$	1	
	$\therefore x = \frac{q_1 q_2}{2\pi \epsilon \text{ ymy}^2}$	1/2	
	But $q_1 = 2e; q_2 = ze$		
	$\therefore \qquad x = \frac{2e \times ze}{2\pi \epsilon mv^2} = \frac{ze^2}{\pi \epsilon mv^2}$	1	
(e)	If a continuous spectrum passes through a gas or sodium flame at a lower	1	
	temperature dark lines are observed in the emerging spectrum		
	It is as a result that gases can absorb radiation at the same frequency as they emit. Total = 20	1	
10 (a)	(i)		
10.(a)	(i) LOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM		

- Electrons are thermionically emitted from the cathode heated by a low voltage	1
 supply. The electrons are accelerated to high speeds by e.h.t. applied between the anode and the cathode On hitting the target metal, electrons in deeper energy levels are displaced. 	1 1 1
- On falling back X-ray radiation is emitted.	
(ii) X-rays β-particle	
Carry no chargeCarry a negative charge	
Not deflected by electric fieldDeflected by electric fieldTravel at the speed of lightDo not travel at speed of light	2
 (iii) X-rays are produced when energetic electrons hit matter and the energy of the X-rays depends on the energy of the bombarding electrons, whereas Photoelectric effect is emission of electrons when electromagnetic radiation of high enough frequency strikes a metal surface. The energy emitted depends on the frequency of the incident radiation 	1
(b) $V = 1.5 \times 10^5 V; c = 2.5 \times 10^2 J kg^{-1} K^{-1}; m = 0.25 kg; \frac{\Delta \theta}{t} = 8 k s^{-1}$	
(i) 99% of electric energy supplied = heat gained by metal target material	1
$\frac{99}{100} \text{ neV} = \text{mc}\left(\frac{\Delta\theta}{t}\right)$ $\therefore \qquad n = \frac{0.25 \times 2.5 \times 10^2 \times 8}{1.6 \times 10^{-19} \times 1.5 \times 10^5 \times 0.99} = 2.10 \text{ x } 10^{16} \text{ electrons per second}$	1
If $= \frac{1.6 \times 10^{-19} \times 1.5 \times 10^5 \times 0.99}{1.6 \times 10^{-19} \times 1.5 \times 10^5 \times 0.99} = 2.10 \text{ x 10}^{-5}$ electrons per second	2
(ii) $eV = hf = h\frac{c}{\lambda}$ $\therefore \lambda = \frac{hc}{N} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 10^{-12}} = 8.25 \times 10^{-12} \text{ m}$	1
$\therefore \lambda = \frac{hc}{eV} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 1.5 \times 10^5} = 8.25 \text{ x } 10^{-12} \text{ m}$	1
(c) (i) the ratio of charge of an electron to its mass	1
(ii) $X_1 X_2$	1/2
$\begin{array}{c c} Slit \\ \hline \\ $	1⁄2
Y ₂	1⁄2
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOK SOCOM	

 X_1, X_2 = Helmholtz coils

