| Name | U0025/ | Combination | |----------|--------|-------------| | i valiic | 00023/ | Comomanon | #### **KCB** #### **Uganda Advanced Certificate Examinations** #### **Mock 2019** #### Chemistry P525/1 Time allowed: 2houirs 45 minutes Date 21st May, 2019 (2-4.45pm) #### **Instructions** Answer **all** questions in section A and any **six** questions in section B Illustrate your answers fully with appropriate diagrams and equations. Your answers should be very clear and neat. Where necessary, assume the following constants; Avogadro's number = 6.02×10^{23} Universal gas constant = 8.314J/K/mol Atmospheric pressure is 101325Nm⁻² Faradays constant = 96500C. #### For examiners use only | Q | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Total | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|-------| | M | Section A | \ : | Answer | all | aue | estions | in | this | section | |------------------|------------|--------|-----|-----|---------|----|------|---------| | | | | | | | | | | | 1 | (a) (i) The decay law is given the ex | xpression | |---------------|---------------------------------------|---| | | State what the symbols represent. | $-\frac{dN}{dt} = \lambda N$ (01½ marks) | | | i) Using the above expression derive | the expression for the relation between half life and | | • • • • • • • | | (02 marks) | | | | Cu) | | | Name the particle emitted and write | e the equation for the reaction: | | | Name of particle; | (01mark) | | | | | | | Equation | | | | | | | · • • • • • • | | | | ii) Calcul
T | he half life for nic | - | | 2 marks) | |---|--|---|--|---| | L | | · · · · · · · · · · · · · · · · · · · | (- | , | | | | | | | | • • • • • • • • • • | | ••••• | • | • | | | • | ••••• | • | • | | | | ••••• | | • | | | • | ••••• | | • | | | | | • | | | | | ••••• | | • | | | • | ••••• | • | • | | | | | • | | | | | ••••• | | • | | | | | | | | | | • | | | | | | | | | | | ollowing experiments products | ental results were | obtained for the reaction | ı | | | > products Initial concent | ental results were | obtained for the reaction Initial rate (mol -1 S - | | | 2B — | products Initial concent | trations (mol [- | | | | 2B ——Exp | Initial concent | trations (mol - | Initial rate (mol -1 S - | | | Exp | Initial concent A 3.0 x 10 ⁻² | trations (mol \ \bigcup \] B 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S = \\ 2.7 \times 10^{-5} | | | 2B — | → products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² | Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5 | | | Exp | Initial concent A 3.0 x 10 ⁻² | trations (mol \ \bigcup \] B 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S = \\ 2.7 \times 10^{-5} | | | 2B ———————————————————————————————————— | → products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | 2B ———————————————————————————————————— | Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | 2B | Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | 2B Zxp | Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | 2B | Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | Exp Exp Deduce | Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻² | B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | | | 2B | products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac | trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect | Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5 10.8 x 10 - 5 t to | 1) | | Deduce A]; | products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac | trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect | Initial rate (mol \(\bigcup_{-1} \) S \(-1 | 1) | | Deduce A]; | products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac | trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect | Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5 10.8 x 10 - 5 t to | 1) | |] | [B]; | | | |---|-----------------|---|-----------| | | | | | | | | | | | | | rite the expression for the rate equation | (0½ mark) | | | | | | | t | the rate | te of reaction under certain conditions for temperature and pressure e in terms of x when the following changes are made. $(0 \frac{1}{2} \text{ mark each})$ | | | | (i)
 | The concentration B is halved while the concentration of A remain | | | | | | | | | • • • • • • • • | | | | | | | | | | | | | | (| (ii) | The rate constant is doubled, by increasing temperature, but keepir concentrations of A and B unchanged. | | | | | | | | | | | | | ••••• | | | | | | |---------------------------|------------------------|---|---|---|---| | (iii | i) If 90% of B is re | emoved by precip | oitation, without a | affecting concent | ration of A. | (c) Ca | lculate the value of t | he rate constant a | nd state its units. | | (02 marks) | 3 C | Calculate the pH of a | 0.1 moldm ⁻³ sol | ution of aluminiu | m nitrate | | | | ociation constant, Ka | • • • • • • • • • • • • • | | • | • | • | • | | | | | | | | | | | | | · • • • • • • • • • • | |---------------|---|---|---|---|---|---|---|---------------------|---|-----------------------|-----------------------| · • • • • • • • • | | • • • • • • • | • | | • | • • • • • • • • • | • | • | • | | • | | · • • • • • • • • | | | | | • | | ••••• | | | | | | · • • • • • • • • • • | | | | | | | | | | | | | · • • • • • • • • | | | | | | | | | | | | | · • • • • • • • • | | | | | | | | | | | | | · • • • • • • • • | | | | | | | | | | | ••••• | | · • • • • • • • • | | | • • • • • • • • • | • | • | | • | • • • • • • • • • | • | • • • • • • • • • • | ••••• | • • • • • • • • • • • | · • • • • • • • • | | • • • • • • • | | • | | | | | | | | | . | | | | | | | | | | | | | | | | • | | | | | | | | | | | | 4 | a) | State th | ree facto | ors that c | an favou | r format | tion of co | omplexe | s. (01 ½ | marks) | | | | ŕ | | | | | | | - | | | | | | ••••• | | ••••• | • | ••••• | ••••• | ••••• | b) Determine the coordination number of the central species and name the following complexes. | Formula of complex | Coordination number | Name of complex | |---|------------------------------------|---------------------------| | $[\operatorname{CrCl}_2(\operatorname{H}_2\operatorname{O})_4]^+$ | | | | | | | | $\left[\mathrm{Ag}(\mathrm{NH_3})_2^+\right]$ | | | | 21 | | | | [Fe(SCN)(H ₂ O) ₅ ²⁺ | | | | | | | | | | | | 5 a) i) What is a | meant by the term ionization energ | gy of an element (2marks) | | | | | | | | | | | | | | | | | | Write equation to show the first | t ionization energy of magnesium | . (1 mark) | 1) 🔞 . | 4.1 | 1450 155001 1-1 | | | third ionization energies of magn | | | | the large difference between the | | | energies of magnesium. | | (2marks) | | | | | | | | | | 6 | Name the product after completing the following equations. | |------|--| | | a) COCH ₂ CH ₃ H ₂ | | | Heat | | | Ticat | | Name | | | | | | | | | | b) CHOHCH ₃ $\stackrel{I_2}{\longrightarrow}$ HO- | | | ŕ | | | | | Name | | | | | | | | | | c) C_2H_5OH Conc H_2SO_4 \longrightarrow | | | 140°C | | | | | Name | | | 7 | Complete the equations and suggest the mechanism. | | | 1 1 00 | | | a) | Methanal with hydroxyl amine | |-------|---------------------|---------------------------------| | ••••• | | | | | | | | | | | | | | | | | b) | Silver acetate with bromoethane | | ••••• | | | | ••••• | | | | | | | | | | | | ••••• | • • • • • • • • • • | | | 8 | Explai | n the following terms. | | | a) | Addition polymerization. | | | | | | ••••• | | | | | | | | ••••• | | | | | b) | Condensation polymerization. | | | | | | ••••• | | | | | | | | | | | | c) | | an example of; | | | |---------|-----|---|------------------------------------|------| | | i) | A natural addition polymer and identify it | s structure. | | | | | | | | | | | | | | | •••• | ii) | Synthetic condensation polymer and identification | ify its structure. | | | | | | | | | | | | | | | 9 | a) | Explain the term eutectic mixture. | (2marks) | | | | | | | | | •••• | b) | Solder is eutectic mixture of tin and lead. | | | | | | i) State one use of solder. | (1mark) | | | • • • • | | ii) In an experiment to determine the | percentage of tin in solder, a stu | dent | DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM** dissolved 4.0g solder in nitric acid to make 1litre of solution. Every 25.0cm³ portion of the | solution read | cted completely with 15.5cm ³ of 0.01M iodine solution. | . Determine percentage of tin | |---|--|-------------------------------------| | in solder. | (r.a.m for tin is 118.7). | | | (2marks) | | | | | | | | ••••• | | | | • | | | | ••••• | SECTION | B . Answer any six questions from this section | | | 10. (a) N
Writ | Nitrogen reacts with hydrogen in a mole ratio of 1:3 to fore; | orm ammonia. | | | quation for the reaction that takes place. | (01 ½) | | | | | | (ii) t | he expression for the equilibrium constant (Kc) | (0 ½) | | ••••• | | | | ••••• | | | | ••••• | | | | | e the conditions used to obtain maximum yield of ammo
Habers process. | onia during it manufacture by (01½) | | | | | | | | | | | ••••• | •••••• | | | • | | ••••• | |
 | ••••• | |---|---|---|---|---|---|--------|---|---|---|---| | (c) | 600°C. | i | e of ammon | | | | | | to be 1: | 5% at | | ••••• | • • • • • • • • • | • | • | • | • | | • | |
• | | | ••••• | • | • | • | | • | | | |
 | | | • | • • • • • • • • | • • • • • • • • • | | | • • • • • • • • • • | | • • • • • • • • • | |
• • • • • • • • • | ••••• | | • | • • • • • • • • • | • • • • • • • • • | | | | | • • • • • • • • • | |
 | • | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | • | • • • • • • • • • | • • • • • • • • • | | • | • • • • • • • • • • | | • • • • • • • • • | |
• • • • • • • • • | • | | ••••• | • | • | • | | • | | • • • • • • • • • | |
• | | | • | • • • • • • • • • | • • • • • • • • • | | • | • • • • • • • • • • | | • • • • • • • • • | |
• • • • • • • • • | • | | ••••• | • | • | • | | • | | • • • • • • • • • | |
• | | | ••••• | | | • | | • | | | |
 | | | | | | • | | • • • • • • • • • • | | | |
 | | | ••••• | • • • • • • • • | • • • • • • • • | | | • • • • • • • • • • | | • • • • • • • • • | • |
• • • • • • • • • | ••••• | | ••••• | • | • | • | | • | | • • • • • • • • • | ••••• |
 | ••••• | | (d) | hydrog | | uld happen
oride gas is a | - | | - | | | | vhen | | | | | | | | | | |
 | | | | | | | | | | | |
 | | | 11 | a) | State th | he chemical | nature of | the follo | owing; | | | | | | | | i) | Soap. | | | | | | | | | ii) Fat. | | | |---|----------------------------------|-------------------------------| | | | | | | | | | | | | | b) Identify any two diff | ferences between a fat and oil. | | | | | | | | | | | | | | | c) Explain how scum for | ormation is a disadvantage in us | e of soap. | er(s), give the name(s) of mono | mer(s) identified and type of | | polymerization process that formed | | | | polymer | Monomer(s) | Type of polymerization | | (HN(CH ₂) ₆ NHCO(CH ₂) ₈ CO) _n | | | | (CH ₂ C(CN)CH ₂ (CN)CH ₂ C(CN)) _n | | | | _ | | nd in each case sta | | · · | een the given pairs ach compound is tre | | |-----------|---|--|---|-----|---|---| | | a) | (CH ₃) ₂ CO and (| CH ₃) ₂ O | | | | | Reage | nt(s) | •••• | | | | • | | | | | | | | | | | ••••• | | | | | | | Observ | vation | | | | | | | | • | ••••• | • | | | | | | | ••••• | ••••• | | | | | | | | b) | CO | and | СНО | | | | | | | | Br | Reager | nt(s) | Observ | zation | | | | | | | O O O O O | uiioii | | | | | | | | | | • | | | | | | | | | | | | | | | | | | ••••• | c) | C_6H_4 | BrOH and C ₆ H ₁₁ ClOH | | |-----------|-------------------|-------------------|---|--------------------------------| | Reag | gent(s) | | | | | | | | | | | | ervation | • • • • • • • • • | | | | Ousc | auon | | | | | | | | | | | | | | | | | 13
of; | a) | Write | e equation and state the conditions for thr rea | ction leading to the formation | | | | i) | Tin (II) chloride. | (2½ marks) | | ••••• | | | | | | | | | | | | ••••• | • • • • • • • • • | • • • • • • • • • | | | | | | • • • • • • • • • | | | | | | ii) | Tin (IV) chloride. | (3 marks) | | | | | | | | | | | | | | | • • • • • • • • • | | | | | ••••• | | | | | | | b) | Tin (| II) chloride and tin (IV) chloride were separa | tely exposed to air. | | | | i) | State what was observed in each case. | (1mark) | | | ii) Write the equation(s) for the reaction(s) that took place. (1½ | marks) | |-----------------|---|---| | | | | | c)
solution. | Write equation for the reaction between tin (II) chloride and iron (III) c (1½ mar) | ks) | | | | • | | 14 a) | Explain the term relative atomic mass. (2mar | | | | | | | | | | | b) in the mas | Explain how ions of different charge to mass ratios can be focused on the deass spectrometer. (2marks) | | | | | | |---------------|--|---|-----------------------------|--|--|--| | ••••• | | | | | | | | | | | | | | | | ••••• | | | | | | | | c) | Conn | per consists of two isotopes, Cu-64 and Cu-65 in in | tensity ratios of 4·1 | | | | | ς, | i) | Explain the term intensity. | (1 mark) | ii)
(½ m | Name the most abundant isotope of copper and garks) | give reason for the answer. | | | | | | | | | | | | | | iii) | Determine the relative atomic mass of copper. | (2marks) | iv) State three advantages about this data. (1½marks) | • • • • • • | ••••• | ••••• | | | | |-------------|-------------|---------|---|--------------|------------------| | • • • • • • | | | Explain the term ideal gas. | ••••• | | | | | | | | | | | | | | | | | | | ii)
 | State four characteristics of and i | C | , | | | | | | | | | | b)
the q | • | graph shown below shows behavions after it. | or of gases. | Use it to answer | c) | Expla | in the | shape for: | (2marks) | |---------------|-----------------|---------------|----------| | | i) | Helium. | | | | | | | | | | | | | | | | | | | ii) | Nitrogen gas. | | | | | | | | | ••••• | | | | • • • • • • • | • • • • • • • • | | | The isotherms for carbon dioxide are shown below. | | i) | State the critical temperature for the gas. (1mark) | |------------------------|----------|--| | | | | | | ii) | Explain the term critical temperature of gas. (1mark) | | | ••••• | | | | | | | 16 a)
he molal free | ezing co | 2.0g of X was dissolved in 100.0g of water, the solution froze at -0.1°C. If nstant for water is 1.8°C/mol/kg; the molar mass of X. (2marks) | | | ••••• | | | | | | | | b) When 2g of X was dissolved in 1000cm ³ of hexane, the solution exerted an osmotic pressure of 40Pa. | | | | |------------------------|---|---|---|--| | | | i) | Determine the molar mass using this data. (1mark) | ••••• | • • • • • • • • | i) | Explain differences in the two molar masses. (1mark) | | | | | , | | | | | | | | | | | | | | | | | | ••••• | | | | c)
at star
(2mar | ndard te | | olution containing $2.8g/litre$ of R exerts an osmotic pressure of $380 \ mmHg$ are and pressure. Calculate the molar mass of R . | | | | | | | | | | | | | | | ••••• | • • • • • • • • • | • • • • • • • • • | | | | 2.7g o | d)
of water | | 3.4g of R was burnt in excess oxygen, 5.04 litres of carbon dioxide and . | | | (2mar | ks) | i) | Calculate the empirical formula of R. Molar gas volume is 22.4 litres | | | • • • • • • | | • | | | | ••••• | • • • • • • • • | • • • • • • • • • | | | END Success | ii) Deduce molecular formula of R. (1mark) | |--| | | | | | | | | | | | | | | | |