

Name	U0025/	Combination
i valiic	00023/	Comomanon

KCB

Uganda Advanced Certificate Examinations

Mock 2019

Chemistry P525/1

Time allowed: 2houirs 45 minutes Date 21st May, 2019 (2-4.45pm)

Instructions

Answer **all** questions in section A and any **six** questions in section B

Illustrate your answers fully with appropriate diagrams and equations.

Your answers should be very clear and neat.

Where necessary, assume the following constants;

Avogadro's number = 6.02×10^{23}

Universal gas constant = 8.314J/K/mol

Atmospheric pressure is 101325Nm⁻²

Faradays constant = 96500C.

For examiners use only

Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
M																		

Section A	\ :	Answer	all	aue	estions	in	this	section

1	(a) (i) The decay law is given the ex	xpression
	State what the symbols represent.	$-\frac{dN}{dt} = \lambda N$ (01½ marks)
	i) Using the above expression derive	the expression for the relation between half life and
• • • • • • •		(02 marks)
		Cu)
	Name the particle emitted and write	e the equation for the reaction:
	Name of particle;	(01mark)
	Equation	
· • • • • • •		

ii) Calcul T	he half life for nic	-		2 marks)
L		· · · · · · · · · · · · · · · · · · ·	(-	,
• • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •	
		•••••		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •	
		•••••		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •		
	ollowing experiments products	ental results were	obtained for the reaction	ı
	> products Initial concent	ental results were	obtained for the reaction Initial rate (mol -1 S -	
2B —	products Initial concent	trations (mol [-		
2B ——Exp	Initial concent	trations (mol -	Initial rate (mol -1 S -	
Exp	Initial concent A 3.0 x 10 ⁻²	trations (mol \ \bigcup \] B 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S = \\ 2.7 \times 10^{-5}	
2B —	→ products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻²	Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5	
Exp	Initial concent A 3.0 x 10 ⁻²	trations (mol \ \bigcup \] B 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S = \\ 2.7 \times 10^{-5}	
2B ————————————————————————————————————	→ products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
2B ————————————————————————————————————	Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
2B	Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
2B Zxp	Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
2B	Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
Exp Exp Deduce	Products Initial concent 1) A 3.0 x 10 ⁻² 3.0 x 10 ⁻² 6.0 x 10 ⁻²	B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻²	Initial rate (mol \(\bigcup_{-1} \) S \(-1	
2B	products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac	trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect	Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5 10.8 x 10 - 5 t to	1)
Deduce A];	products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac	trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect	Initial rate (mol \(\bigcup_{-1} \) S \(-1	1)
Deduce A];	products Initial concent 1) A 3.0 x 10^{-2} 3.0 x 10^{-2} 6.0 x 10^{-2} e the order of reac	trations (mol $\frac{1}{2}$ B 3.0 x 10 ⁻² 6.0 x 10 ⁻² 3.0 x 10 ⁻² etions with respect	Initial rate (mol -1 S - 2.7 x 10 - 5 5.4 x 10 - 5 10.8 x 10 - 5 t to	1)

]	[B];		
		rite the expression for the rate equation	(0½ mark)
t	the rate	te of reaction under certain conditions for temperature and pressure e in terms of x when the following changes are made. $(0 \frac{1}{2} \text{ mark each})$	
	(i) 	The concentration B is halved while the concentration of A remain	
	• • • • • • • •		
((ii)	The rate constant is doubled, by increasing temperature, but keepir concentrations of A and B unchanged.	

•••••					
(iii	i) If 90% of B is re	emoved by precip	oitation, without a	affecting concent	ration of A.
(c) Ca	lculate the value of t	he rate constant a	nd state its units.		(02 marks)
3 C	Calculate the pH of a	0.1 moldm ⁻³ sol	ution of aluminiu	m nitrate	
	ociation constant, Ka				
• • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

											· • • • • • • • • • •
											· • • • • • • • •
• • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		· • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •		•••••						· • • • • • • • • • •
											· • • • • • • • •
											· • • • • • • • •
											· • • • • • • • •
									•••••		· • • • • • • • •
	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	•••••	• • • • • • • • • • •	· • • • • • • • •
• • • • • • •		• • • • • • • • • • • • • • • • • • • •									.
	• • • • • • • • • • • • • • • • • • • •										
4	a)	State th	ree facto	ors that c	an favou	r format	tion of co	omplexe	s. (01 ½	marks)	
	ŕ							-			
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••				

b) Determine the coordination number of the central species and name the following complexes.

Formula of complex	Coordination number	Name of complex
$[\operatorname{CrCl}_2(\operatorname{H}_2\operatorname{O})_4]^+$		
$\left[\mathrm{Ag}(\mathrm{NH_3})_2^+\right]$		
21		
[Fe(SCN)(H ₂ O) ₅ ²⁺		
5 a) i) What is a	meant by the term ionization energ	gy of an element (2marks)
Write equation to show the first	t ionization energy of magnesium	. (1 mark)
1) 🔞 .	4.1	1450 155001 1-1
	third ionization energies of magn	
	the large difference between the	
energies of magnesium.		(2marks)

6	Name the product after completing the following equations.
	a) COCH ₂ CH ₃ H ₂
	Heat
	Ticat
Name	
	b) CHOHCH ₃ $\stackrel{I_2}{\longrightarrow}$ HO-
	ŕ
Name	
	c) C_2H_5OH Conc H_2SO_4 \longrightarrow
	140°C
Name	
7	Complete the equations and suggest the mechanism.
	1 1 00

	a)	Methanal with hydroxyl amine
•••••		
	b)	Silver acetate with bromoethane
•••••		
•••••		
•••••	• • • • • • • • • •	
8	Explai	n the following terms.
	a)	Addition polymerization.
•••••		
•••••		
	b)	Condensation polymerization.
•••••		

c)		an example of;		
	i)	A natural addition polymer and identify it	s structure.	
••••	ii)	Synthetic condensation polymer and identification	ify its structure.	
9	a)	Explain the term eutectic mixture.	(2marks)	
••••	b)	Solder is eutectic mixture of tin and lead.		
		i) State one use of solder.	(1mark)	
• • • •		ii) In an experiment to determine the	percentage of tin in solder, a stu	dent

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

dissolved 4.0g solder in nitric acid to make 1litre of solution. Every 25.0cm³ portion of the

solution read	cted completely with 15.5cm ³ of 0.01M iodine solution.	. Determine percentage of tin
in solder.	(r.a.m for tin is 118.7).	
(2marks)		
•••••		
• • • • • • • • • • • • • • • • • • • •		
•••••		
SECTION	B . Answer any six questions from this section	
10. (a) N Writ	Nitrogen reacts with hydrogen in a mole ratio of 1:3 to fore;	orm ammonia.
	quation for the reaction that takes place.	(01 ½)
(ii) t	he expression for the equilibrium constant (Kc)	(0 ½)
•••••		
•••••		
•••••		
	e the conditions used to obtain maximum yield of ammo Habers process.	onia during it manufacture by (01½)

	•••••	••••••			• • • • • • • • • • • • • • • • • • • •		•••••		 	•••••
(c)	600°C.	i	e of ammon						to be 1:	5% at
•••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		 •	
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				 	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • •			• • • • • • • • • •		• • • • • • • • •		 • • • • • • • • •	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • •					• • • • • • • • •		 	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • • •		 • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •		 •	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • • •		 • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •		 •	
•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •				 	
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • •				 	
•••••	• • • • • • • •	• • • • • • • •			• • • • • • • • • •		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 • • • • • • • • •	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	•••••	 	•••••
(d)	hydrog		uld happen oride gas is a	-		-				vhen
11	a)	State th	he chemical	nature of	the follo	owing;				
		i)	Soap.							

ii) Fat.		
b) Identify any two diff	ferences between a fat and oil.	
c) Explain how scum for	ormation is a disadvantage in us	e of soap.
	er(s), give the name(s) of mono	mer(s) identified and type of
polymerization process that formed		
polymer	Monomer(s)	Type of polymerization
(HN(CH ₂) ₆ NHCO(CH ₂) ₈ CO) _n		
(CH ₂ C(CN)CH ₂ (CN)CH ₂ C(CN)) _n		

_		nd in each case sta		· ·	een the given pairs ach compound is tre	
	a)	(CH ₃) ₂ CO and (CH ₃) ₂ O			
Reage	nt(s)	••••				• • • • • • • • • • • • • • • • • • • •
	•••••					
Observ	vation					
	• • • • • • • • • • • • • • • • • • • •					
•••••	• • • • • • • • • • • • • • • • • • • •					
•••••	•••••					
	b)	CO	and	СНО		
				Br		
Reager	nt(s)					
Observ	zation					
O O O O O	uiioii					
			• • • • • • • • • • • • • • • • • • • •			
					•••••	

	c)	C_6H_4	BrOH and C ₆ H ₁₁ ClOH	
Reag	gent(s)			
	ervation	• • • • • • • • •		
Ousc	auon			
13 of;	a)	Write	e equation and state the conditions for thr rea	ction leading to the formation
		i)	Tin (II) chloride.	(2½ marks)
•••••				
•••••	• • • • • • • • •	• • • • • • • • •		
		• • • • • • • • •		
		ii)	Tin (IV) chloride.	(3 marks)
	• • • • • • • • •			
•••••				
	b)	Tin (II) chloride and tin (IV) chloride were separa	tely exposed to air.
		i)	State what was observed in each case.	(1mark)

	ii) Write the equation(s) for the reaction(s) that took place. (1½	marks)
c) solution.	Write equation for the reaction between tin (II) chloride and iron (III) c (1½ mar)	ks)
		• • • • • • • • • • • • • • • • • • • •
14 a)	Explain the term relative atomic mass. (2mar	

b) in the mas	Explain how ions of different charge to mass ratios can be focused on the deass spectrometer. (2marks)					
•••••						
•••••						
c)	Conn	per consists of two isotopes, Cu-64 and Cu-65 in in	tensity ratios of 4·1			
ς,	i)	Explain the term intensity.	(1 mark)			
	ii) (½ m	Name the most abundant isotope of copper and garks)	give reason for the answer.			
	iii)	Determine the relative atomic mass of copper.	(2marks)			

iv) State three advantages about this data. (1½marks)

• • • • • •	•••••	•••••			
• • • • • •			Explain the term ideal gas.	•••••	
		ii) 	State four characteristics of and i	C	,
	b) the q	•	graph shown below shows behavions after it.	or of gases.	Use it to answer

c)

Expla	in the	shape for:	(2marks)
	i)	Helium.	
	ii)	Nitrogen gas.	
	•••••		
• • • • • • •	• • • • • • • •		

The isotherms for carbon dioxide are shown below.

	i)	State the critical temperature for the gas. (1mark)
	ii)	Explain the term critical temperature of gas. (1mark)
	•••••	
16 a) he molal free	ezing co	2.0g of X was dissolved in 100.0g of water, the solution froze at -0.1°C. If nstant for water is 1.8°C/mol/kg; the molar mass of X. (2marks)
	•••••	

	b) When 2g of X was dissolved in 1000cm ³ of hexane, the solution exerted an osmotic pressure of 40Pa.			
		i)	Determine the molar mass using this data. (1mark)	
•••••	• • • • • • • •	i)	Explain differences in the two molar masses. (1mark)	
		,		
		•••••		
c) at star (2mar	ndard te		olution containing $2.8g/litre$ of R exerts an osmotic pressure of $380 \ mmHg$ are and pressure. Calculate the molar mass of R .	
•••••	• • • • • • • • •	• • • • • • • • •		
2.7g o	d) of water		3.4g of R was burnt in excess oxygen, 5.04 litres of carbon dioxide and .	
(2mar	ks)	i)	Calculate the empirical formula of R. Molar gas volume is 22.4 litres	
• • • • • •		• • • • • • • • • • • • • • • • • • • •		
•••••	• • • • • • • •	• • • • • • • • •		

END Success

ii) Deduce molecular formula of R. (1mark)