P425/2 APPLIED MATHEMATICS PAPER 2 August. 2017 3 hour

Uganda Advanced Certificate of Education MOCK SET 4 EXAMINATIONS 2017 APPLIED MATHEMATICS Paper 2 3 hours

INSRUCTIONS TO CANDIDATES:

Answer **all** the **eight** questions in section **A** and only **five** questions in section **B**.

Additional question(s) answered will **not** be marked.

All working **must** be shown clearly.

Graph paper is provided.

Where necessary, take acceleration due to gravity, $g = 9.8 \text{ m s}^{-2}$.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

(Answer all questions in this section.)

Qn 1: Events A and B are such that $P(A) = \frac{8}{15}$, $P(B) = \frac{1}{3}$ and $P(A/B) = \frac{1}{3}$	$=\frac{1}{5}$. find
the probability that:	-
(i). neither A nor B occurs.	[3]
(ii). Event B does not happen if event A has occurred.	[2]

Qn 2: The velocity of a particle of mass 3 kg at any time, *t*, is given by $\underbrace{\boldsymbol{v}}_{\sim} = \left(6\underbrace{\boldsymbol{i}}_{\sim} + 4\underbrace{\boldsymbol{j}}_{\sim}\right)t + t^{2}(2\underbrace{\boldsymbol{j}}_{\sim} - \sin 2t\underbrace{\boldsymbol{k}}_{\sim}) \text{ metres. Find the rate of doing work} \\ \text{after two seconds.} \qquad [5]$

- **Qn 3:** Points *A* and *B* are 22.5 km apart. A body is timed as it moves from A to B and it takes 0.426 hours. Determine the maximum possible error made in calculating the speed of the body. [5]
- **Qn 4:** A discrete random variable X has a cumulative distribution function (c.d.f) given below.

x	1	2	3		
F(x)	λ	4λ	9λ		
Find the:					
(a). value o	fλ.		[2]		

(b). mean of X.	[3]

- **Qn 5:** A bullet of mass 150 g moving at a speed of 215 km h⁻¹ penetrates 10 cm into a fixed wooden rectangular block before coming to rest. Find the:
 - (a). resistance due to the block.
 - (b). velocity of the bullet when it penetrates 4 cm into the block. [2]

Qn 6: The table below is an extract from a table of tangents.

v			0		
θ	24'	30′	36′	42′	
tan 25°θ′	0.4748	0.4770	0.4791	0.4813	
Use linear interpolation or extrapolation to find:					
(i). tan	25°18′.			[3]	
(ii). tan	$^{-1}(0.4775).$			[2]	

[3]

- Qn 7: Forces of magnitudes 10 N, 15 N and 12 N act in the directions 040°,
 W 30° N and North-East respectively. Find the magnitude and direction of the resultant force. [5]
- **Qn 8:** The following grades were obtained by 8 candidates in Mathematics in General Paper.

Mathematics	А	0	В	F	Е	С	D	В
General	<i>C</i> ₃	D_2	D_1	P_8	P_8	D_2	<i>C</i> ₃	D_2
Paper								

- (a). Calculate the rank correlation coefficient for the grades. [4]
- (b). Comment on your result at 1% level of significance. [1]

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.

Question 9:

- (a). Use the trapezium rule with 5 strips to estimate $\int_{1}^{3} \sin^{2} x \, dx$, correct to 3 decimal places. [5]
- (b). Calculate the relative error in your estimation in (a) above and suggest how the error can be reduced. [7]

Question 10:

The table below shows the weights (W) in kg of 150 patients who visited a certain health unit during a certain week.

0	
Weight (kg)	Number of patients
$0 \le W \le 19$	30
$20 \le W \le 29$	46
$30 \le W \le 39$	70
$40 \le W \le 49$	102
$50 \le W \le 59$	130
$60 \le W \le 69$	142
$70 \le W \le 79$	150

- Draw a cumulative frequency curve and use it to estimate the number of (a). patients who weigh between 13 kg and 53 kg who visited the health unit. [6] Calculate the: (b).
 - (i). mean weight.
 - Modal weight. (ii).

Question 11:

At 12:00 noon, the position vector of particle A relative to particle B is (a). 2i + 20j + 18k kilometres and velocities of A and B by then are

4i + j - 2k km h⁻¹ and 6i + 3k km h⁻¹ respectively. Find the:

- (i). time when they are nearest to each other. [4]
- (ii). Closest distance between them.
- To a girl running at 6 m s⁻¹ on a bearing of 155°, a low flying bird (b). appears to be moving at 7 m s⁻¹ on a bearing of 250°. Find the true velocity of the bird. [5]

Question 12:

A continuous random variable X has the probability density function given below:

$$f(x) = \begin{cases} \frac{x^2}{27} & ; \quad 0 \le x \le \beta, \\ \frac{1}{3} & ; \quad \beta \le x \le \alpha, \\ 0 & ; \quad elsewhere. \end{cases}$$

Where α and β are integers.

- Find the values of α and β , hence sketch f(x). (a).
- (b). Calculate the:
 - median of X. (i).
 - (ii). Mean of X.

Ouestion 13:

ABCD is a uniform triangular lamina right angled at B where AB = 2t and BC = 3t.

[6]

[6]

[3]

[6]

The midpoints P and Q of BC and CA respectively are joined and the portion PQC cut off.

(a). Find in terms of *t*, the distance from AB and BC of the centre of gravity of the lamina ABPQ. [8]

(b). When the lamina ABPQ is suspended freely from vertex A, find the angle AB makes with the vertical. [4]

Question 14:

The error *X* grammes made by a certain type of weighing scale is normally distributed with mean -5 g and variance 9 g².

- (a). Find the probability that a randomly chosen scale will have a positive error. [4]
- (b). Out of 75 scales chosen at random, determine how many will have an error magnitude of less than 3. [5]
- (c). Find the probability that out ten scales chosen at random, exactly four will have a positive error. [3]

Question 15:

- (a). Show graphically that the equation $2e^x + x^2 4 = 0$ has two real roots. Hence obtain the negative root from your graph to 1 d.p. [5]
- (b). Use Newton Raphson's method to find the negative root of the equation, correct to three significant figures. [7]

Question 16:

A light inextensible string of length 0.72 m is attached to two points A and B where A is vertically above B and AB = 0.48 m. If a smooth ring of mass 50 g is threaded on the string and made to move in a horizontal circle about B, find the:

(a).	Tension in the string.	[9]
(b).	Angular speed of the ring.	[3]

END