

NAME	Index No
Signature	
P525/1	
CHEMISTRY	
PAPER 1	
2 ³ / ₄ Hours	

MOCK EXAMINATIONS, 2019

Uganda Advanced Certificate of Education

PAPER I

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES

- *Answer all questions in section A and six questions in section B
- *All questions must be answered in the spaces provided
- *The periodic Table with relative atomic masses is provided.
- *Illustrate your answers with **equations** where applicable
- * Molar gas constant = $8.314 \text{ j mol}^{-1}\text{k}^{-1}$
- *Molar volume of a gas at s.t.p is 22.4 litres

For examiners use only

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
Marks																		

SECTION A: (46 Marks)

Answer **all** the questions

1. (a) Explain what is meant by the term electron affinity .	(1 mark)
(b) Calculate the electron affinity of hydrogen using the following data: Enthalpy of atomization of potassium = 90 kJ mol ⁻¹	•
Bond dissociation energy of hydrogen = 436 kJ mol ⁻¹	
First ionization energy of potassium = 418 kJ mol ⁻¹	
Lattice energy of potassium hydride = 710 kJ mol ⁻¹	
Enthalpy of formation of potassium hydride = -62 kJ mol ⁻¹	(3 marks)
2. An organic compound Z has a structure	

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

RCH=CHCH2COOH

used to identify the functional group, state the observation made and write	equations for the
reaction that takes place when the compound is reacted with the reagent. (i) Name of the functional group	$(^1/_2 \text{ mark })$
Reagent.	$(^1/_2 \text{ mark })$
Observation.	$(^{1}/_{2} \text{ mark })$
Equation	(1 mark)
(ii) Name of the functional group	$(^{1}/_{2} \text{ mark })$
Reagent.	$(^1/_2 \text{ mark })$
Observation.	$(^{1}/_{2} \text{ mark })$
	•••••
Equation	(1 mark)

Name the functional group which is present in Z and in each case name the reagent that can be

3. (a) Water was added to anhydrous iron(III) chloride drop wise until there we change.	vas no further
(i) State what was observed.	(1 mark)
(ii) Write equation for the reaction that took place.	(1 ¹ / ₂ marks)
(b)To the solution formed in (a) was added a piece of magnesium ribbon.	
(i) State what was observed.	(1 mark)
(ii) Write equation for the reaction that took place.	$(1^{1}/_{2} \text{ marks})$
	, , ,
4. (a) Explain what is meant by the term isotopes .	(1 mark)
(b) Bromine has relative atomic mass of 79.9 and consists of two isotopes $^{79}_{35}B$ Determine which of the two isotopes is the most abundant	$r \text{ and } {}^{81}_{35}Br.$

Ecolebooks.com $(1^{1}/_{2} \text{ marks})$ (c) Sketch the mass spectrum for bromine. 5. (a) Oxygen diffuses 2.31times as fast as a compound Z with the formula Ni(CO)_n. Determine the molecular formula of Z. (3 marks)

(b) State the;(i) co-ordinate number of nickel in compound Z.	(¹ / ₂ mark)
(ii) oxidation number of nickel in compound Z.	$(^1/_2 \text{ mark})$
6 Write equations to show how Dhanyl athennate can be synthesized	
6. Write equations to show how Phenyl ethanoate can be synthesized Indicate the reagents and conditions necessary. (4	marks)
7. The following half cell reactions are given;	
$\mathbf{E}^{^{\mathrm{o}}}$	⁰ /V
$PbO_{(s)} + 4H^{+}_{(aq)} + 2e$ \longrightarrow $Pb^{2+}_{(aq)} + 2H_{2}O_{(l)}$ +1	1.46
$Fe^{3+}_{(aq)} + e$ \longrightarrow $Fe^{2+}_{(aq)}$ $+6$	0.77
(a) Write the cell notation for the cell formed by combining the two h	alf aalla (2 marks)
(a) Write the cell notation for the cell formed by combining the two h	
(b) State what will be observed and write equations for the reactions(i) Anode	that takes place at;
Observation	$(^{1}/_{2} \text{ mark})$
Equation	(1 mark)

(ii) Cathode	
Observation	$(^1/_2 \text{ mark})$
Equation	(1 mark)
(c) Calculate the e.m.f of the cell.	(1 mark)
8. (a) Starting with dodecan-1-ol CH ₃ (CH) ₁₀ CH ₂ OH describe briefly how a synth can be prepared.	netic detergent $(4^{1}/_{2} \text{ marks})$
(b) State any two advantages of synthetic detergent over soapy detergents. (1 mag	rk)

9. State what will be observed and write equations for (a) Nickel ethanoate is heated strongly and the gaseous 2,4-dinitrophenyl hydrazine. Observation	s products passed through acidified $(1^{1}/_{2} \text{ marks})$
Equation(s)	$(2^{1}/_{2} \text{ marks})$
Observation	
Equation(s)	$(2^{1}/_{2} \text{ marks})$

SECTION B: (54 Marks)

Answer six questions ONLY

(10) Complete the following organic reactions and outline the reaction mechanism

Mechanism (b) CH₃CH=C(CH₃)2 + HI	(a) $CH_3 + Cl_2 $ Fe	(3 ½ marks)
(b) CH ₃ CH=C(CH ₃) ₂ + HI	Mechanism	
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
(b) CH ₃ CH=C(CH ₃) ₂ + HI		
Mechanism		
Mechanism		
	(b) CH ₃ CH=C(CH ₃) ₂ + HI →	$(2^1/_2 \text{ marks})$
	Mechanism	

(c) CH ₃ COCH ₃	<u>KCN/H</u> ⁺ 20 ⁰ C		(3 marks)
Mechanism			
11. (a) Draw the stru	acture and name the shap	e of the following speci-	es. In each case state the
oxidation state of the	e central atom in the struc	eture.	(6 marks)
Species	Structure	Shape	Oxidation state
CS_2			
POBr			
$\mathrm{SnO_3}^{2-}$			

(b) Compare the bond an	ngle of POBr	and SnO ₃ ² -	.Give reason for	r your answe	er. (3 ma	arks)
12 (-) The head disease:		- £ 41 £-11-		1 :		
12. (a) The bond dissocia	ation energies	of the follo	wing compound	is are given;		1
Elements		Fluorine	Chlorine	Bromine	Iodine	
Bond dissociation energi		33.3	57.8	46.1	36.2	
State and explain variation	on in bond diss	sociation er	nergies of the ab	ove given e	lements. (4n	narks).
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••			•••••		• • • • • • • • • • • • • • • • • • • •	
•••••			•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
(b) Bromine and iodine can be prepared by reacting concentrated sulphuric acid with sodium bromide and sodium iodide respectively however chlorine cannot be prepared using the same method. Explain. (3 marks)						
•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • •

(c) State what will be observed and write equation for the reaction that takes concentrated sulphuric acid is added to solid sodium bromide.	place when
Observation	$(^1/_2 \text{ mark})$
Equation	(1 ¹ / ₂ marks)
13. (a) Explain what is meant by the term partition coefficient .	$(1^{1}/_{2} \text{ marks})$
(b) 100cm^3 of an aqueous solution of X containing 30g per litre of X was sha trichloromethane. The distribution coefficient of X between trichloromethane Calculate the mass of X which was extracted.	ken with 100cm ³ of

successive portions of 50cm ³ of trichloromethane.	shaken with two (4 marks)
(c) Calculate the mass of X which will be extracted if the solution of X in (b) is successive portions of 50cm³ of trichloromethane. (d) Comment on your answer in (b) and (c) (e) State one application of partition coefficient apart from solvent extraction. 14. Write equations to show how the following synthesis can be carried out. In the reagents and conditions necessary.	
(d) Comment on your answer in (b) and (c)	(1 mark)
	(¹ / ₂ mark)
·	each case indicate
(a) Propanone from ethanol	(3 marks)

• • • • •		
••••		
• • • • •		
• • • • •		
••••		
• • • • •		
• • • • •		
• • • • •		
(b)	Ethanoic acid to Phenyl ethanol.	(3 marks)
(c) 2	2-Methyl propan-2-ol from 2-Bromo propane.	(3 marks)
••••		
• • • • •		• • • • • • • • • • • • • • • • • • • •
• • • • •		

15. A compound Y contains by mass 61.02% carbon,15.25% hydro (a) Determine the empirical formula of Y.	egen and the rest nitrogen. (2 marks)
(b) Compound Y has a density of 2.63gdm ⁻³ at s.t.p .Determine the 1	molecular formula of Y.
	(2 marks)
(c) Write the structural formula of the possible isomers of Y.	$(1^1/2 \text{ marks})$

<u>Ecolebooks.com</u>

(d) Compound Y forms yellow oils when reacted with cold concentrated hydroch sodium nitrite. (i) Identify Y	aloric acid and (½ mark)
(ii) Write equation for the reaction that took place.	(1 mark)
(e) (i) Name the reagent that can be used to confirm the functional group in composition	$(^1/_2 \text{ mark})$
(ii) State the observation made.	(¹ / ₂ mark)
(iii) Write equation for the reaction that takes place when the named reagent in (e) with compound Y.	(1 mark)

16. (a) Iron metal is extracted from one of its ore siderite . The ore is mixed with coke as stone and then heated strongly in a blast furnace.	nd lime
Write equations for the reactions that lead towards formation of iron metal in the blast for	urnace.
	marks)
(b) 1.6g of an impure sample of tin (II) chloride was added to an aqueous solution of ire chloride and the mixture heated until there was no further change. The solution was dilu 250cm ³ with water. 25cm ³ of the solution was acidified with dilute sulphuric acid and ti with 0.02M potassium permanganate solution.16.0cm ³ of oxidant was required to reach point. Determine the percentage purity of tin(II) chloride. (4 ½	ted to
	• • • • • • • • • • • • • • • • • • • •

(17) (a) Distinguish between terms thermosetting plastics and thermosoftening plastics are example in each case.	plastics. (3 marks)		
(b) A polymer Q has a structural formula of			
Cl Cl ——————————————————————————————————			
(i) Write the name and structural formula of the monomer of the above given poly	mer		
	(1½ marks)		
(ii) Name the type of polymerization by which the above given polymer is formed			
(c) When 71.76g of the monomer in (a) i was polymerized 2.67 x 10 ⁻² moles of th formed. Determine the;			
(i) molecular mass of the polymer.	(1 ½ marks)		
(ii) number of monomers in the polymer.	(2 marks)		

(d) State one use of the polymer Q.	(½ mark)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 19.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20,2
11 Na 23.0	12 Mg 24.3						410.000					13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 TI 47.9	23 V 50.9	24 Cr 52,0	25 Ma 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Ca 63.5	30 Zn 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 T1 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)											n.	**			
			57 La 139	53 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Es (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw

- 1. Indicates atomic number.
- 2. $\frac{H}{1.0}$ Indicates relative atomic mass.