

NAME	Index	number:
Signature:		
P525/3		
Chemistry		
Paper 3 3 † Hours		
3 ¹ / ₄ Hours		

MOCK EXAMINATIONS 2019

Uganda Advanced Certificate of Education

CHEMISTRY PRACTICAL

Paper 3

3 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer all the questions.
- Answers are to be written in the spaces provided.
- You are not allowed to use any reference books.
- Mathematical tables, slide rulers and non-programmable silent electronic calculators may be used.
- Candidates are **not allowed to start** working with the apparatus for the **first 15 minutes**.

 This time is to ensure that they have all the chemicals and apparatus they need.

For examiner's use only				
Q.1 Q.2 Q.3 TOTAL				

1. You are provided with the following:

CA1, which is a solution of potassium manganate (vii) of unknown concentration.

CA2, which is a 0.05M solution of iron(ii) ions.

Solid Y, which is an impure salt of ethanedioate (oxalate). RFM of Y = 130

2M Sulphuric acid

You are required to standardize CA1 and use it to determine the percentage of the impurity in Y.

Theory

In acidic media, manganate (vii) ions oxidize iron (ii) to iron(iii) and ethanedioate ions to carbon dioxide. The manganate (vii) ions are reduced to manganese (ii) ions and water.

Procedure A:

(a). Pipette 20.0 or 25.0cm³ of CA2 into a clean conical flask and add an equal volume of 2M sulphuric acid and titrate the mixture with solution CA1 from the burette until you get a persistent colour change. Repeat the titration 2-3 times to get consistent results. Enter your results in the table.

Results:

Volume of	pipette	used:	m	3
-----------	---------	-------	---	---

	1	2	3
Final burette reading (cm³)			
Initial burette reading(cm³)			

Volume of <i>CA1</i> used (cm ³)				
Titre values used for calculating the	average volume of	CA1 used:		
			2	
Average volume of CA1 used			cm³	
Procedure B:				
Weigh accurately about 1.0g of soli	id Y and dissolve it	in about 100 c	m³ of water in o	ı beaker.
Transfer the solution into a 250cm ³ v	volumetric flask ar	nd make up to t	he mark with dis	stilled water.
Label the resultant solution CA3.				
Pipette 20.0 or 25.0cm³ of CA3 into	o a clean conical fl	ask and add ar	ı equal volume of	2M sulphuric
acid. Warm the mixture to about 6	00°C and titrate th	e warm solutio	n with CA1 fron	n the burette
until you get a persistent colour chan	ige. Repeat the tit	ration 2-3 time	es to get consist	ent results.
Enter your results in the table.				
Results:				
Mass of weighing container + Y =		g		
Mass of weighing container =		g		
Mass of Y used =		g		
Volume of pipette used	Cr	n ³		_
	1	2	3	
Final burette reading (cm ³)				

Initial burette reading(cm³)				
Volume of <i>CA1</i> used (cm ³)				
Titre values used for calculating th	e average volume of	f CA1 used:		
Average volume of CA1 used		cm³		
Questions:				
(a). Write the overall equation for	the reaction betwe	en manganate (vii) ions and;	
(i). iron (ii) ions				
(ii). Oxalate ions				
()				
(b)Calculate the				
(i) number of moles of manganate (v	vii) ions that reacted	d with iron (ii) i	ions.	

(ii) . molar concentration of CA1	
(d). Determine the;	
(i). concentration of the oxalate ions in $\it CA3$ in mol dm ⁻³ .	

		 	• • • • • • • • • • • • • • • • • • • •
		 	•••••
(ii) Danaantaaa of the impuu	nity in golid V		
(11). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in Solid 7.		
(11). Percentage of the impur	Try in Solid 7.		
(ii). Percentage of the impur	Try in Solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur	Try in solid 7.		
(ii). Percentage of the impur			

2. You are provided with substance X which contains **two cations** and **two anions**. Carry out the following tests on X and identify the cations and anions in it. Identify any gases evolved. Record your results in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat one spatula endful of X		
in a dry test tube, first		
gently then strongly until there is		
no further change.		
(b) To two spatula endfuls of X		
in a test tube add about 5cm ³ of		
nitric acid drop wise with shaking		
until there is no further change.		
(c). To the resultant solution from		
(b) add dilute sodium hydroxide		
drop wise until in excess. Shake		
	I	

and filter. Keep both the filtrate		
and residue.		
TESTS	OBSERVATIONS	DEDUCTIONS
(d). To the filtrate form (c), add		
dilute hydrochloric acid drop wise		
until the solution just becomes		
acidic.		
Divide the acidic solution into six		
portions.		
(i). To the first portion of the		
acidified filtrate, add dilute		
solution of sodium hydroxide		
drop- wise until in excess.		
(ii). To the second portion of the		
acidified filtrate, add dilute		
ammonia solution drop- wise until		
in excess		
(iii). To the third portion of the		
acidified filtrate, add 2-3 drops		
of potassium iodide solution		
(iv). To the fourth portion of the		
acidified filtrate, add 5 drops of		
litmus solution followed by dilute		
ammonia solution drop wise until in		
excess.		
	<u> </u>	

(v). To the fifth portion of the		
acidified filtrate, add 3-4 drops		
of lead (ii) nitrate solution		
TESTS	OBSERVATIONS	DEDUCTIONS
(vi). Use the sixth portion of the		
acidified filtrate to carry out a		
test of your own to confirm one		
of the anions in X.		
Test:		
(d). Wash the residue and		
dissolve it in dilute hydrochloric		
acid. Divide the acidic solution		
into three portions.		
(i). To the first portion of the		
acidic solution, add dilute sodium		
hydroxide solution drop- wise		
until in excess.		
(ii). To the second portion of the		
acidic solution, add dilute		
ammonia solution drop- wise until		
in excess.		
ii). Use the third portion of the		
acidic solution to carry out a test		

of your own	n to confirm one of the
cations in \	v.
Test:	
(e) (i)	The cations in X are:and
(ii)	The anions in X are:andand

3. You are provided with organic substance \mathbf{W} . You are required to determine the nature of \mathbf{W} . Carry out the following tests on \mathbf{W} and record your observations and deductions in the table below.

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a spatula endful of		
W on a spatula end or in a		
Porcelain dish.		
(b) Transfer two spatula endfuls of		
W to a test tube containing 5cm³ of		
water, warm the mixture and test		
with litmus. Divide the warm solution		
into four portions.		
(i). To the first portion, add 3-4		
drops of sodium carbonate solution.		
(ii). To the second portion, add 3-4		

drops of neutral iron (iii) chloride		
solution.		
(iii). To the third portion, add 3-4		
drops of acidified potassium		
dichromate solution.		
(c). Dissolve one spatula endful of W		
in 2 cm³ of methanol and add 2-3		
drops of Brady's reagent.		
(d). To a spatula endful of ${f W}$, add ${f 5}$		
drops of ethanol followed by 2-3		
drops of concentrated sulphuric acid.		
Heat the mixture and pour it into a		
•		
small beaker of cold water. Allow to		
•		
small beaker of cold water. Allow to	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand TESTS	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand TESTS (e). To a spatula endful of W in a test	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand TESTS (e). To a spatula endful of W in a test tube, add 3cm³ of water, warm and	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand TESTS (e). To a spatula endful of W in a test tube, add 3cm³ of water, warm and add 2-3 drops of acidified potassium	OBSERVATIONS	DEDUCTIONS
small beaker of cold water. Allow to stand TESTS (e). To a spatula endful of W in a test tube, add 3cm³ of water, warm and add 2-3 drops of acidified potassium	OBSERVATIONS	DEDUCTIONS

END

