Ecolebooks.com

P425/1 PURE MATHEMATICS PAPER 1 July/August, 2019 3 hours

MOCK EXAMINATIONS 2019 Uganda Advanced Certificate of Education Pure Mathematics Paper 1 Time: 3 Hours

NAME: COM	IBINATION:	
INSTRUCTIONS TO CANDIDATES: → Answer all the eight questions in section A	Question	Mark
and only five questions in section B .	Section A	
Indicate the five questions attempted in		
section B in the table aside.		
Additional question(s) answered will not be	~	
marked.	on B	
All working must be shown clearly.	Section	
Graph paper is provided.	S	
Silent, non-programmable scientific	-	

Total

calculators and mathematical tables with a list of formulae may be used.

Section A (40 Marks)

Answer **ALL** questions from this section. All questions carry equal marks.

- **Qn 1:** Solve the equation $5 \sin 2x + 4 = 10 \sin^2 x$ for $-\pi \le x \le \pi$. [5]
- **Qn 2:** The second and third terms of a geometric progression are 24 and $12(\alpha + 1)$ respectively. Find α if the sum of the first three terms of the progression is 76. [5]
- **Qn 3:** The perpendicular bisector of the line joining the points (3, 2) and (5, 6) meets the x-axis at A and the y- axis at B, prove that the distance = $6\sqrt{5}$. [5]

Qn 4: Given that
$$=\frac{\sin x}{x}$$
, show that $x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + xy = 0.$ [5]

Qn 5: Show that the lines L_1 , vector equation $r = \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and L_2 , vector equation $r = \begin{pmatrix} 3 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ are perpendicular and find the position vector of their point of intersection. [5]

Qn 6: Find
$$\int \frac{\cos x}{4+\sin^2 x} dx.$$
 [5]

- **Qn 7:** Solve the equation $\log_x 32 \log_{256} x = 1.$ [5]
- **Qn 8:** A spherical water container of internal radius 10 cm has water to a maximum depth of 18 cm. Find the volume of the water in the container. [5]

Section B (60 Marks)

Answer any five questions from this section. All questions carry equal marks.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

[12]

Question 9:

- Differentiate: (a).
 - (i). $\log_{10}\left(\frac{e^x}{\cos^3 x}\right)$,
 - (ii). $\sin^2(4x^2 + 5)$.
- A curve is defined by the parametric equation $x = 2t^2$, $y = 4t t^4$. Find (b). the equation of the tangent to the curve at the point (2,3). [12]

Question 10:

Given that $\frac{a}{b} = \frac{c}{d} = k$, show that $k = \frac{a+c}{b+d}$. Hence, solve the simultaneous (a). equations

$$\frac{x+4z}{4} = \frac{y+z}{6} = \frac{3x+y}{5}$$
$$4x+2y+5z = 30.$$
$$x^{2x} = 4e^{x} + 3 = 0$$

(b). Solve the equation $e^{2x} - 4e^x + 3 = 0$.

Question 11:

Given that \underline{r} and \underline{s} are inclined at 60°; \underline{t} is perpendicular to $\underline{r} + \underline{s}$ and $|\underline{r}| =$ (a). 8, $\left| \underbrace{s}{} \right| = 5$, $\left| \underbrace{t}{} \right| = 10$, find $\left| \underbrace{r}{} + \underbrace{s}{} + \underbrace{t}{} \right|$ and $\left| \underbrace{r}{} - \underbrace{s}{} \right|$. The equation of a plane **P** is $r_{\sim} \begin{pmatrix} 2 \\ 6 \\ 0 \end{pmatrix} = 33$ where r_{\sim} is the position vector of

(b).

a point on **P**. Find:

- the perpendicular distance from the origin to the plane. (i).
- the equation of a line *L* which passes through the point A(5, -1, 2)(ii). and perpendicular to **P**.
- (iii). the coordinates of the points of intersection of *P* and *L*. [12]

Question 12:

(a). Find
$$\int x \sec^2 x \, dx$$
,

(b). Evaluate $\int_{2}^{3} \frac{3+3x}{x^{3}-1} dx$. [12]

Question 13:

Ecolebooks.com

(a). In the equation $ax^2 + bx + c = 0$, one of the root is the square of the other. Without solving the equation, prove that $c(a - b)^3 = a(c - b)^3$

(b). (i). If
$$\alpha$$
 and β are the roots of the quadratic equation
 $ax^2 + bx + c = 0$, obtain the equation whose roots are $\frac{1}{\alpha^3}$ and $\frac{1}{\beta^3}$.

(ii). If in the equation in (b)(i) above, $\alpha\beta^2 = 1$, prove that $a^3 + c^3 + abc = 0.$ [12]

Question 14:

- (a). Find the equation of the line through the intersection of the lines 3x 4y + 6 = 0 and 5x + y + 13 = 0 which
 - (i). passes through the point (2, 4),
 - (ii). makes an angle of 60° with the *x* –axis.
- (b). A circle touches the y –axis at a distance +4 from the origin and cuts off an intercept 6 from the x –axis. Find the equation of the circle. [12]

Question 15:

- (a). Given that $\cot^2 \theta + 3 \csc^2 \theta = 7$, show that $\tan \theta = \pm 1$.
- (b). (i). Express the function $y = 4 \cos x 6 \sin x$ in the form $R \cos(x + \alpha)$ where *R* is a constant and $0 \le \alpha \le 2\pi$. Hence find the coordinates of the minimum point of *y*.
 - (ii). State the values of x at which the curve cuts the y –axis. [12]

Question 16:

(a). Find the particular solution of the equation $\frac{dy}{dx} = x - \frac{2y}{x}$ given y(2) = 4. [5]

- (b). The rate of increase of the population , *P*, of baboons in Busitema forest reserve is proportional to the number present in the forest at any time , *t* years. On first June 2010, there were 300 baboons in the forest and a year later, they were found to be 380.
 - (i). Form a differential equation involving *P* and *t* where *t* is time. [1]
 - (ii). Predict the population of baboons by first June 2018. [6]

END